A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Inferring Causal Direction from Relational Data
2016
Conference on Uncertainty in Artificial Intelligence
Inferring the direction of causal dependence from observational data is a fundamental problem in many scientific fields. Significant progress has been made in inferring causal direction from data that are independent and identically distributed (i.i.d.), but little is understood about this problem in the more general relational setting with multiple types of interacting entities. This work examines the task of inferring the causal direction of peer dependence in relational data. We show that,
dblp:conf/uai/ArbourMJ16
fatcat:hnrflqokere45n2w2gle23gf34