AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies

S. D. Zabludoff, C. Deng, M. R. Grondine, A. M. Sheehy, S. Ashwell, B. L. Caleb, S. Green, H. R. Haye, C. L. Horn, J. W. Janetka, D. Liu, E. Mouchet (+8 others)
2008 Molecular Cancer Therapeutics  
Insights from cell cycle research have led to the hypothesis that tumors may be selectively sensitized to DNA-damaging agents resulting in improved antitumor activity and a wider therapeutic margin. The theory relies on the observation that the majority of tumors are deficient in the G 1 -DNA damage checkpoint pathway resulting in reliance on S and G 2 checkpoints for DNA repair and cell survival. The S and G 2 checkpoints are regulated by checkpoint kinase 1, a serine/threonine kinase that is
more » ... ctivated in response to DNA damage; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G 1 checkpoint signaling pathway allowing for DNA repair and cell survival. Here, we describe the preclinical profile of AZD7762, a potent ATP-competitive checkpoint kinase inhibitor in clinical trials. AZD7762 has been profiled extensively in vitro and in vivo in combination with DNA-damaging agents and has been shown to potentiate response in several different settings where inhibition of checkpoint kinase results in the abrogation of DNA damage-induced cell cycle arrest. Dose-dependent potentiation of antitumor activity, when AZD7762 is administered in combination with DNAdamaging agents, has been observed in multiple xenograft models with several DNA-damaging agents, further supporting the potential of checkpoint kinase inhibitors to enhance the efficacy of both conventional chemotherapy and radiotherapy and increase patient response rates in a variety of settings. [Mol Cancer Ther
doi:10.1158/1535-7163.mct-08-0492 pmid:18790776 fatcat:ycgpvq2xdrae3igucq7nxhzzna