Evaluation and comparison of two efficient probabilistic primality testing algorithms

Louis Monier
<span title="">1980</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/elaf5sq7lfdxfdejhkqbtz6qoq" style="color: black;">Theoretical Computer Science</a> </i> &nbsp;
We analyse two recent probabiktic primality testing algorithms; the first one is derived from Miller [6] in a formulation given uy Rabin [7], and the second one is from Solovay and Strassen [9]. Both decide whether or not an odd number n is prime in time O(m, log n M(n)) with an error probability less than (Y", for some 0 s cy a< $. Our comparison shows that the first algorithm is always more efficient than the second, both in probabilistic and algorithmic terms.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(80)90007-9">doi:10.1016/0304-3975(80)90007-9</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/auxd53ib4bbnjku2cxien6xp5m">fatcat:auxd53ib4bbnjku2cxien6xp5m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190418001756/https://core.ac.uk/download/pdf/82697399.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fb/8d/fb8dcc1fc83b7e1062ed273afa9f4d02fa8a2d54.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(80)90007-9"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>