Ultrasonic Disintegration of Microalgal Biomass and Consequent Improvement of Bioaccessibility/Bioavailability in Microbial Fermentation [chapter]

Byong-Hun Jeon, Jeong-A Choi, Hyun-Chul Kim, Jae-Hoon Hwang, Reda Abou-Shanab, Brian Dempsey, John Regan, Jung Kim
2015 New Microbial Technologies for Advanced Biofuels  
Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for microbial fermentation to produce ethanol and hydrogen. The effect of sonication condition was quantitatively
more » ... luated with emphases on the characterization of carbohydrate components in microalgal suspension and on subsequent production of fermentative bioenergy. Method: Scenedesmus obliquus YSW15 was isolated from the effluent of a municipal wastewater treatment plant. The sonication durations of 0, 10, 15, and 60 min were examined under different temperatures at a fixed frequency and acoustic power resulted in morphologically different states of microalgal biomass lysis. Fermentation was performed to evaluate the bioenergy production from the non-sonicated and sonicated algal biomasses after pretreatment stage under both mesophilic (35°C) and thermophilic (55°C) conditions. Results: A 15 min sonication treatment significantly increased the concentration of dissolved carbohydrates (0.12 g g -1 ), which resulted in an increase of hydrogen/ethanol production through microbial fermentation. The bioconvertibility of microalgal biomass sonicated for 15 min or longer was comparable to starch as a control, indicating a high feasibility of using microalgae for fermentative bioenergy production. Increasing the sonication duration resulted in increases in both algal surface hydrophilicity and electrostatic repulsion among algal debris dispersed in aqueous solution. Scanning electron microscope images supported that ruptured algal cell allowed fermentative bacteria to access the inner space of the cell, evidencing an enhanced bioaccessibility. Sonication for 15 min was the best for fermentative bioenergy (hydrogen/ethanol) production from microalga, and the productivity was relatively higher for thermophilic (55°C) than mesophilic (35°C) condition. Conclusion: These results demonstrate that more bioavailable carbohydrate components are produced through the ultrasonic degradation of microalgal biomass, and thus the process can provide a high quality source for fermentative bioenergy production.
doi:10.1201/b18525-12 fatcat:4iw5zxfmajavxpt2iea2dxacta