Learning from Positive and Unlabeled Data with Arbitrary Positive Shift [article]

Zayd Hammoudeh, Daniel Lowd
2020 arXiv   pre-print
Positive-unlabeled (PU) learning trains a binary classifier using only positive and unlabeled data. A common simplifying assumption is that the positive data is representative of the target positive class. This assumption rarely holds in practice due to temporal drift, domain shift, and/or adversarial manipulation. This paper shows that PU learning is possible even with arbitrarily non-representative positive data given unlabeled data from the source and target distributions. Our key insight is
more » ... that only the negative class's distribution need be fixed. We integrate this into two statistically consistent methods to address arbitrary positive bias - one approach combines negative-unlabeled learning with unlabeled-unlabeled learning while the other uses a novel, recursive risk estimator. Experimental results demonstrate our methods' effectiveness across numerous real-world datasets and forms of positive bias, including disjoint positive class-conditional supports. Additionally, we propose a general, simplified approach to address PU risk estimation overfitting.
arXiv:2002.10261v4 fatcat:makah7ddqjcmdmwa326nwv4yia