A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Causal Discovery for Linear Mixed Data
2022
Conference on Causal Learning and Reasoning
Discovery of causal relationships from observational data, especially from mixed data that consist of both continuous and discrete variables, is a fundamental yet challenging problem. Traditional methods focus on polishing the data type processing policy, which may lose data information. Compared with such methods, the constraint-based and score-based methods for mixed data derive certain conditional independence tests or score functions from the data's characteristics. However, they may return
dblp:conf/clear2/ZengSMS22
fatcat:wrpt4rdnsfanblevellomc55ea