A Contemporary Machine Learning Method for Accurate Prediction of Cervical Cancer

Jeremiah Tanimu Jesse, Hamada Mohamed, Hassan Mohammed, Yusuf Ilu Saratu
2021 SHS Web of Conferences  
With the advent of new technologies in the medical field, huge amounts of cancerous data have been collected and are readily accessible to the medical research community. Over the years, researchers have employed advanced data mining and machine learning techniques to develop better models that can analyze datasets to extract the conceived patterns, ideas, and hidden knowledge. The mined information can be used as a support in decision making for diagnostic processes. These techniques, while
more » ... ng able to predict future outcomes of certain diseases effectively, can discover and identify patterns and relationships between them from complex datasets. In this research, a predictive model for predicting the outcome of patients' cervical cancer results has been developed, given risk patterns from individual medical records and preliminary screening tests. This work presents a Decision tree (DT) classification algorithm and shows the advantage of feature selection approaches in the prediction of cervical cancer using recursive feature elimination technique for dimensionality reduction for improving the accuracy, sensitivity, and specificity of the model. The dataset employed here suffers from missing values and is highly imbalanced. Therefore, a combination of under and oversampling techniques called SMOTETomek was employed. A comparative analysis of the proposed model has been performed to show the effectiveness of feature selection and class imbalance based on the classifier's accuracy, sensitivity, and specificity. The DT with the selected features and SMOTETomek has better results with an accuracy of 98%, sensitivity of 100%, and specificity of 97%. Decision Tree classifier is shown to have excellent performance in handling classification assignment when the features are reduced, and the problem of imbalance class is addressed.
doi:10.1051/shsconf/202110204004 doaj:bfc575fa753841008cb61f9e96320e0c fatcat:p4hfuszxr5h63ckhz2llybbwhq