Methods for Quantized Compressed Sensing [article]

Hao-Jun Michael Shi, Mindy Case, Xiaoyi Gu, Shenyinying Tu, Deanna Needell
<span title="2015-12-30">2015</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, we compare and catalog the performance of various greedy quantized compressed sensing algorithms that reconstruct sparse signals from quantized compressed measurements. We also introduce two new greedy approaches for reconstruction: Quantized Compressed Sampling Matching Pursuit (QCoSaMP) and Adaptive Outlier Pursuit for Quantized Iterative Hard Thresholding (AOP-QIHT). We compare the performance of greedy quantized compressed sensing algorithms for a given bit-depth, sparsity, and noise level.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1512.09184v1</a> <a target="_blank" rel="external noopener" href="">fatcat:3ipczqs2g5fwfcftf33bg2ikwe</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>