A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Robust i-vector based adaptation of DNN acoustic model for speech recognition
2015
Interspeech 2015
unpublished
In the past, conventional i-vectors based on a Universal Background Model (UBM) have been successfully used as input features to adapt a Deep Neural Network (DNN) Acoustic Model (AM) for Automatic Speech Recognition (ASR). In contrast, this paper introduces Hidden Markov Model (HMM) based ivectors that use HMM state alignment information from an ASR system for estimating i-vectors. Further, we propose passing these HMM based i-vectors though an explicit non-linear hidden layer of a DNN before
doi:10.21437/interspeech.2015-605
fatcat:it4bhvibifhenngbehewfkdlqe