A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit <a rel="external noopener" href="http://arrow.monash.edu.au/vital/access/services/Download/monash:170100/DOC">the original URL</a>. The file type is <code>application/pdf</code>.
Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit
<span title="2016-03-07">2016</span>
<i title="The Optical Society">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/cg4vcsfty5dfvgmat5wm62wgie" style="color: black;">Optics Express</a>
</i>
Modern optical communications rely on high-resolution, highbandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1364/oe.24.005715">doi:10.1364/oe.24.005715</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/27136769">pmid:27136769</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ez2fypksd5eftl36o4d2naumxa">fatcat:ez2fypksd5eftl36o4d2naumxa</a>
</span>
more »
... earrectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a subcm 2 footprint owing to the high-index-contrast Si 3 N 4 /SiO 2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170922001636/http://arrow.monash.edu.au/vital/access/services/Download/monash:170100/DOC" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/09/97/0997f3ef67fe20d71df1eb937162de80ab81d54f.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1364/oe.24.005715">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
Publisher / doi.org
</button>
</a>