Eva E. Davidson, Tara M. Pandya, Katherine E. Royston, Thomas M. Evans, Andrew T. Godfrey, Shane C. Henderson, Gary Wolfram, Joel M. Risner, P. Blaise, M. Margulis
2021 EPJ Web of Conferences  
The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) offers unique capabilities to combine highfidelity in-core radiation transport with temperature feedback using MPACT and CTF with a follow-on fixed source transport calculation using the Shift Monte Carlo code to calculate ex-core quantities of interest. In these coupled calculations, MPACT provides a fission source to Shift for the follow-on radiation transport calculation.
more » ... nsport calculation. In past VERA releases, MPACT passed a spatially dependent source without the energy distribution to Shift. Shift then assumed a 235U Watt spectrum to sample the neutron source energies. There were concerns that, in cases with burned or mixed oxide (MOX) fuel near the periphery of the core, the assumption of a 235U Watt spectrum for the source neutron energies would not be accurate for studying ex-core quantities of interest, such as pressure vessel fluence or detector response. Therefore, two additional options were implemented in VERA for Shift to sample neutron source energies: (1) a nuclide-dependent Watt spectra for 235U, 238U, 239Pu, and 241Pu, and (2) to use the standard 51-energy group MPACT spectrum. Results show that the 51-group MPACT spectrum is not suitable for ex-core calculations because the groups have been fine-tuned for in-core calculations. Differences in relative detector response due to 235U and nuclide-dependent Watt spectra sampling schemes were negligible; however, the use of nuclide-dependent Watt spectra for vessel fluence calculations was found to be important for fuel cycles with burned and fresh fuel.
doi:10.1051/epjconf/202124702027 fatcat:zesg7lavkvfyzhmmalvkb4a3ie