Satellite Remote Sensing and the Marine Biodiversity Observation Network: Current Science and Future Steps

Maria Kavanaugh, Oregon State University, Tom Bell, Dylan Catlett, Megan Cimino, Scott Doney, Willem Klajbor, Monique Messié, Enrique Montes, Frank Muller Karger, Daniel Otis, Jarrod Santora (+3 others)
2021 Oceanography  
Coastal ecosystems are rapidly changing due to human-caused global warming, rising sea level, changing circulation patterns, sea ice loss, and acidification that in turn alter the productivity and composition of marine biological communities. In addition, regional pressures associated with growing human populations and economies result in changes in infrastructure, land use, and other development; greater extraction of fisheries and other natural resources; alteration of benthic seascapes;
more » ... ased pollution; and eutrophication. Understanding biodiversity is fundamental to assessing and managing human activities that sustain ecosystem health and services and mitigate humankind's indiscretions. Remote-sensing observations provide rapid and synoptic data for assessing biophysical interactions at multiple spatial and temporal scales and thus are useful for monitoring biodiversity in critical coastal zones. However, many challenges remain because of complex bio-optical signals, poor signal retrieval, and suboptimal algorithms. Here, we highlight four approaches in remote sensing that complement the Marine Biodiversity Observation Network (MBON). MBON observations help quantify plankton functional types, foundation species, and unique species habitat relationships, as well as inform species distribution models. In concert with in situ observations across multiple platforms, these efforts contribute to monitoring biodiversity changes in complex coastal regions by providing oceanographic context, contributing to algorithm and indicator development, and creating linkages between long-term ecological studies, the next generations of satellite sensors, and marine ecosystem management.
doi:10.5670/oceanog.2021.215 fatcat:q42u6rlur5gqrfzkpzkv7uujvu