Cortical surface registration for image-guided neurosurgery using laser-range scanning

M.I. Miga, T.K. Sinha, D.M. Cash, R.L. Galloway, R.J. Weil
2003 IEEE Transactions on Medical Imaging  
In this paper, a method of acquiring intraoperative data using a laser range scanner (LRS) is presented within the context of model-updated image-guided surgery. Registering textured point clouds generated by the LRS to tomographic data is explored using established point-based and surface techniques as well as a novel method that incorporates geometry and intensity information via mutual information (SurfaceMI). Phantom registration studies were performed to examine accuracy and robustness for
more » ... each framework. In addition, an in vivo registration is performed to demonstrate feasibility of the data acquisition system in the operating room. Results indicate that SurfaceMI performed better in many cases than point-based (PBR) and iterative closest point (ICP) methods for registration of textured point clouds. Mean target registration error (TRE) for simulated deep tissue targets in a phantom were 1 0 0 2 2 0 0 3 and 1 2 0 3 mm for PBR, ICP, and SurfaceMI, respectively. With regard to in vivo registration, the mean TRE of vessel contour points for each framework was 1 9 1 0 0 9 0 6 and 1 3 0 5 for PBR, ICP, and SurfaceMI, respectively. The methods discussed in this paper in conjunction with the quantitative data provide impetus for using LRS technology within the model-updated image-guided surgery framework. Index Terms-Cortical surface, image-guided surgery, iterative closest point, laser-range scanner, mutual information, registration.
doi:10.1109/tmi.2003.815868 pmid:12906252 pmcid:PMC3819811 fatcat:fyvq646nonhtziv3ydhfnkqzza