TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery

Marius Fehr, Fadri Furrer, Ivan Dryanovski, Jürgen Sturm, Igor Gilitschenski, Roland Siegwart, Cesar Cadena
Fig. 1: Change Detection Algorithm: (left) One of 10 reconstructed scene observations. (center) Reconstruction of the static environment after 10 observations. (right) Discovered dynamic objects. Abstract-Robots that are operating for extended periods of time need to be able to deal with changes in their environment and represent them adequately in their maps. In this paper, we present a novel 3D reconstruction algorithm based on an extended Truncated Signed Distance Function (TSDF) that
more » ... to continuously refine the static map while simultaneously obtaining 3D reconstructions of dynamic objects in the scene. This is a challenging problem because map updates happen incrementally and are often incomplete. Previous work typically performs change detection on point clouds, surfels or maps, which are not able to distinguish between unexplored and empty space. In contrast, our TSDF-based representation naturally contains this information and thus allows us to more robustly solve the scene differencing problem. We demonstrate the algorithms performance as part of a system for unsupervised object discovery and class recognition. We evaluated our algorithm on challenging datasets that we recorded over several days with RGB-D enabled tablets. To stimulate further research in this area, all of our datasets are publicly available 3 .
doi:10.3929/ethz-b-000189737 fatcat:hhmzduwsvzfypjhd7qzqg74ri4