The Quantile-Matching Approach to Improving Radar Quantitative Precipitation Estimation in South China

Linye Song, Shangfeng Chen, Yun Li, Duo Qi, Jiankun Wu, Mingxuan Chen, Weihua Cao
2021 Remote Sensing  
Weather radar provides regional rainfall information with a very high spatial and temporal resolution. Because the radar data suffer from errors from various sources, an accurate quantitative precipitation estimation (QPE) from a weather radar system is crucial for meteorological forecasts and hydrological applications. In the South China region, multiple weather radar networks are widely used, but the accuracy of radar QPE products remains to be analyzed and improved. Based on hourly radar QPE
more » ... and rain gauge observation data, this study first analyzed the QPE error in South China and then applied the Quantile Matching (Q-matching) method to improve the radar QPE accuracy. The results show that the rainfall intensity of the radar QPE is generally larger than that determined from rain gauge observations but that it usually underestimates the intensity of the observed heavy rainfall. After the Q-matching method was applied to correct the QPE, the accuracy improved by a significant amount and was in good agreement with the rain gauge observations. Specifically, the Q-matching method was able to reduce the QPE error from 39–44%, demonstrating performance that is much better than that of the traditional climatological scaling method, which was shown to be able to reduce the QPE error from 3–15% in South China. Moreover, after the Q-matching correction, the QPE values were closer to the rainfall values that were observed from the automatic weather stations in terms of having a smaller mean absolute error and a higher correlation coefficient. Therefore, the Q-matching method can improve the QPE accuracy as well as estimate the surface precipitation better. This method provides a promising prospect for radar QPE in the study region.
doi:10.3390/rs13234956 fatcat:2buljujlbvhnzlcx4orytjhdyu