A remark on the existence of positive solutions for variable exponent elliptic systems

G.A. Afrouzi, S. Shakeri, N.T. Chung
2013 Arab Journal of Mathematical Sciences  
In this article, we consider the system of differential equations ÀD pðxÞ u ¼ k pðxÞ ½aðxÞu aðxÞ v cðxÞ þ h 1 ðxÞ in X; where X & R N is a bounded domain with C 2 -boundary @X; 1 < pðxÞ; qðxÞ 2 C 1 ðXÞ are functions. The operator ÀD p(x) u = À div(OEÑuOE p(x)À2 Ñu) is called the p(x)-Laplacian. When a, b, d, c satisfy some suitable conditions, we prove the existence of positive solution via sub-supersolution arguments without assuming sign conditions on the functions h 1 and h 2 .
doi:10.1016/j.ajmsc.2012.08.002 fatcat:rqlxdgufcrdrbctbtrlwxsxi4y