A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Learning Compact Reward for Image Captioning
[article]
2020
arXiv
pre-print
Adversarial learning has shown its advances in generating natural and diverse descriptions in image captioning. However, the learned reward of existing adversarial methods is vague and ill-defined due to the reward ambiguity problem. In this paper, we propose a refined Adversarial Inverse Reinforcement Learning (rAIRL) method to handle the reward ambiguity problem by disentangling reward for each word in a sentence, as well as achieve stable adversarial training by refining the loss function to
arXiv:2003.10925v1
fatcat:se65gwk7fvae3kfpo6jyxvvase