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SUMMARY. The generalized linear mixed model (GLMM), which extends the generalized linear

model (GLM) to incorporate random effects characterizing heterogeneity among subjects, is widely

used in analyzing correlated and longitudinal data. Although there is often interest in identify-

ing the subset of predictors that have random effects, random effects selection can be challenging,

particularly when outcome distributions are non-normal. This article proposes a fully Bayesian

approach to the problem of simultaneous selection of fixed and random effects in GLMMs. Inte-

grating out the random effects induces a covariance structure on the multivariate outcome data,

and an important problem which we also consider is that of covariance selection. Our approach

relies on variable selection-type mixture priors for the components in a special LDU decomposition

of the random effects covariance. A stochastic search MCMC algorithm is developed, which relies

on Gibbs sampling, with Taylor series expansions used to approximate intractable integrals. Simu-

lated data examples are presented for different exponential family distributions, and the approach

is applied to discrete survival data from a time-to-pregnancy study.
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1. Introduction

With improvements in computation permitting routine implementation, the generalized linear

mixed model (GLMM) has become very widely used in analyses of correlated and longitudinal

data (McCulloch and Searle, 2001). Analogous to the mixed model (Laird and Ware, 1982) exten-

sion of the linear model, the GLMM extends the generalized linear model (GLM) to incorporate

random effects characterizing heterogeneity among subjects or clusters. By integrating out the ran-

dom effects, one can induce a dependency structure on the multiple responses, and hence GLMMs

provide a convenient framework for modeling of multivariate non-Gaussian data. However, many

complications arise in the non-Gaussian case, since integrals involved in marginalizing out the ran-

dom effects do not have simple closed forms. This leads to some difficulties in model fitting and

inferences on the fixed effects regression coefficients, problems addressed by Schall (1991), Zeger

and Karim (1991), Breslow and Clayton (1993), McGilchrist (1994), and McCulloch (1997) among

others. Greater challenges arise when interest instead focuses on selection of predictors to be in-

cluded in the fixed and random effects components of the model, and when covariance structure

modeling is the focus.

As motivation, we consider data from an epidemiologic study of time to pregnancy (Rowland

et al., 1992). In this study, dental assistants completed a demographic and exposure history ques-

tionnaire, while also providing information on the number of menstrual cycles during which the

woman was having noncontracepting sexual intercourse before the most recent pregnancy. Time to

pregnancy (TTP) is a discrete event time, which can be analyzed using the following GLMM:

Pr(Ti = t |Ti ≥ t,xit, zit) =
exp (x′

itβ + z′itζi)

1 + exp (x′
itβ + z′itζi)

, (1)

where Ti is the TTP for woman i, xit and zit are vectors of predictors that may vary from cycle

to cycle, β are fixed effect regression coefficients, ζ i ∼ N(0,Σ) are random effects for woman i,

and Σ is a covariance matrix. If the predictors to be included in the fixed (xit) and random (zit)

effects components are known, then one can fit (1) in standard software packages (e.g., SAS or

WinBUGS) to obtain estimates of β and Σ and to assess hypotheses on the fixed effects, such as

H0l : βl = 0 (the lth predictor has no effect on fecundability). However, it is also of interest to
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determine which factors vary in their effects across women. For example, do the effects of aging,

recent oral contraceptive use, and smoking vary? Addressing such hypotheses is equivalent to

assessing whether random effects can be excluded from the model by effectively setting certain

elements of Σ to 0, a difficult problem given the constraints on Σ.

Potentially, one can select a preferred GLMM by repeatedly fitting the model for all possible

choices of xit and zit and then applying a standard criterion, such as the AIC or BIC. Such an

approach is not feasible unless the number of candidate predictors is modest, and there is no general

consensus on what the penalty for model complexity should be in a model with random effects. In

addition, it is often not enough to say which model is preferred, one wants to report a weight of

evidence (e.g., that the effect of smoking on fecundability varies among women). To assess whether

one or more random effects should be included in the model, several authors have proposed frequen-

tist score tests (Commenges and Jacqmin-Gadda, 1997; Lin, 1997; Hall and Praestgaard, 2001). In

the Bayesian literature, Albert and Chib (1997) proposed an approach for testing whether a ran-

dom intercept should be included, Sinharay and Stern (2001) developed a more general approach

for calculating Bayes factors for comparing GLMMs, and Chen et al. (2003) proposed a class of

informative priors for model selection in GLMMs. These methods focus on comparing two models

at a time, and do not provide a general approach for searching for promising subsets of candidate

predictors.

In the setting of linear mixed models for normal data, Chen and Dunson (2003) proposed

a Bayesian approach for random effects selection based on using variable selection priors for the

components in a special decomposition of the random effects covariance. Related approaches have

been used in graphical (or covariance structure) modeling for multivariate normal data (refer to

Wong, Carter and Kohn, 2003; Liechty, Liechty and Muller, 2004 for recent references). Bayesian

variable selection in conventional GLMs has also received a lot of interest in the literature. Raftery

(1996) proposed an approximate Bayes factor approach, Meyer and Laud (2002) considered pre-

dictive variable selection, Nott and Leonte (2004) developed an innovative sampling algorithm and

Ntzoufras, Dellaportas, and Foster (2003) developed methods for joint variable and link selection.
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In order to implement Bayesian selection of fixed and random effects while also considering

covariance structure modeling, we first choose variable selection-type mixture priors for the fixed

effects regression coefficients and the parameters in a special LDU decomposition of the random

effects covariance proposed by Chen and Dunson (2003). These priors allow fixed effects to drop

out of the model by placing probability mass on βl = 0. In addition, following a related approach

to Albert and Chib (1997) and Chen and Dunson (2003), we assign positive probability to random

effects having 0 variance to effectively move between the full model with random effects for every

predictor and submodels excluding one or more random effects. This prior specification has conve-

nient computational properties, which is important given the potentially large number of models

under consideration. In particular, given the conditional model probabilities, which can be approx-

imated using Taylor series expansions, Gibbs sampling can be implemented as in typical GLMs

using adaptive rejection sampling.

Outside of the realm of normal linear models, it is typically the case that Bayesian model

selection requires the calculation of normalizing constants, which do not have closed form expres-

sions. For this reason, many approaches have relied on approximations to intractable integrals,

commonly using Laplace and other Taylor series approaches. The method proposed in this paper

is based on the idea of using limited analytic approximations together with Markov chain Monte

Carlo (MCMC) sampling. Similar ideas were implemented previously by Raftery, Madigan and

Volinsky (1996) in the context of model averaging in survival analysis, and Chipman, George and

McCulloch (2002, 2003) in implementing analyses of treed GLMs.

Section 2 describes the model and prior specification. Section 3 outlines the algorithm for

posterior computation. Section 4 illustrates the approach using several simulated data examples.

Section 5 applies the method to the time to pregnancy application, and Section 6 discusses the

results.

2. The Model

2.1 Generalized Linear Mixed Models

For observation j (j = 1, . . . , ni) from subject i (i = 1, . . . , n), let yij denote the response variable,
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let xij denote a p× 1 vector of candidate predictors, and let zij denote a q× 1 vector of candidate

predictors. The elements of yi = (yi1, . . . , yi,ni
)′ are assumed to be conditionally-independent

random variables from a simple exponential family, so that the density function of yij given xij ,

zij and random-effects ζ i = (ζi1, . . . , ζiq)
′ is expressed as:

π(yij |xij , zij , ζi) = exp

{
yijθij − b(θij)

aij(φ)
+ c(yij , φ)

}
, (2)

where θij is a location parameter, φ is a scalar dispersion parameter, and aij(·), b(·), c(·) are known

functions, with aij(φ) typically expressed as φ/wij , where wij is a known weight. The canonical

parameter θij is related to the linear predictor ηij = x′
ijβ +z′ijζi through a monotone differentiable

link function h(·), so that θij = h(ηij), where β is a p×1 vector of fixed effect regression coefficients

(referred to as fixed since the coefficients are constant for all subjects), and ζ i ∼ Nq(0,Σ) is a q×1

vector of subject-specific random effects with covariance matrix Σ. In this initial specification,

we assume that all the candidate predictors are included to define a full model. The resulting

conditional mean and variance of yij are as follows:

µij = E(yij |xij , zij , ζi) = b′(θi),

Vij = V(yij |xij , zij , ζi) = b′′(θi)φ/wij ,

where we focus on the case in which aij(φ) = φ/wij .

Heterogeneity among subjects is accommodated by allowing the regression coefficients, and

hence the linear predictor conditional on the covariates, to vary. When zij is a subvector of xij ,

the full model allows the regression coefficients for the covariates included in zij to vary among

subjects, while assuming that the remaining coefficients are fixed for all subjects. Integrating out

the random effects ζ i, this specification induces a correlation structure in the multiple observations

from a subject. In particular, integrating out ζ i, we have

ρ(yij, yij′ |xij , zij) =

∫
yij yij′π(yij |xij , zij , ζi)π(yij′ |xij′ , zij′ , ζi)π(ζi) dyijdyij′dζi − µijµij′

√
VijVij′

, (3)

which is not available in closed form except in the normal linear case. However, it is easy to see that

the shared dependency on the random effects ζ i in the models for yij and yij′ induces correlation

in these outcomes.
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Let y = (y′
1, . . . ,y

′
n)′, yi = (yi1, . . . , yini

)′, X = (X′
1, . . . ,X

′
n)′, Xi = (xi1, . . . ,xini

)′, Z =

diag(Z1, . . . ,Zn), Zi = (zi1, . . . , zini
)′, and ζ = (ζ ′

1, . . . , ζ
′
n)′. The joint distribution of responses y

and random effects ζ conditionally on the predictors X and Z is of the form

π(y, ζ |β, φ,Σ,X,Z) =
n∏

i=1

ni∏

j=1

π(yij|ηij , φ)π(ζ i|Σ), (4)

where π(ζi|Σ) = (2π)−
q

2 |Σ|−
1

2 exp{−1
2ζ ′

iΣ
−1ζi}. To facilitate our further development, expression

(4) can also be written as

π(y, ζ |β, φ,Σ,X,Z) = exp{[y′h(η) − b′(h(η))1N ]/a′ + c′(y, φ)1N}π(ζ|Σ), (5)

where η = Xβ + Zζ and 1N is an N × 1 vector of ones, where N =
∑n

i=1 ni.

The specification of the model is completed by choosing a particular exponential family dis-

tribution for the conditional distribution of yij (e.g., Bernoulli) with a given link function (e.g.,

logistic). We will assume that the distribution and link function are known, but will account for

uncertainty in the elements of xij and zij to be included in the model, as well as the covariance

structure in the ζ i’s. In particular, let x
(M)
ij , z

(M)
ij , β(M), ζ

(M)
i , and Σ(M) denote the fixed effect

predictors, random effect predictors, fixed effect coefficients, random effects, and random effects

covariance, respectively, for model M , which is specified as η
(M)
ij = x

(M)′

ij β(M) + z
(M)′

ij ζ
(M)
i , with

the dispersion parameter, link function, and distributional form assumed common to the differ-

ent models M ∈ M. The predictors x
(M)
ij consist of a pM ≤ p subset of xij , while z

(M)
ij is a

qM ≤ q subset of zij . In addition, ζ
(M)
i ∼ N(0,Σ(M)) is a qM × 1 vector of random effects, with

qM × qM covariance matrix Σ(M), which can have zero off-diagonal elements corresponding to con-

ditional independence relationships in the random effects included. The model space, M, includes

all possible combinations of subsets of xij and zij and zero off-diagonal elements of the random

effects covariance matrices corresponding to these subsets. Hence, the total number of models is

2p
∑q

k=0

(q
k

)
2

1

2
(q−k)(q−k−1).

2.2 Motivation

Our goal is to select good models from among the different possibilities for M . Our approach will

rely on a stochastic search-type algorithm in which we embed the different candidate models within
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the full model, and then drop out terms. Fixed effect predictors will be dropped out by using the

common strategy of setting their regression coefficients to 0, while random effect selection involves

a slightly more involved approach based on setting parameters in a decomposition of the random

effects covariance equal to 0. To implement this strategy, we choose mixture priors with positive

probability mass at zero for the fixed effects coefficients and the parameters in a decomposition of

the random effects covariance.

In Bayesian literature, it is common practice to use decompositions in specifying priors for

covariance matrices. For example, Daniels and Zhao (2003) used a special Cholesky decomposition

to model changes in the random effects covariance over time. A related decomposition approach

was considered by Daniels and Pourahmadi (2002). Daniels and Kass (1999) instead considered

spectral decomposition. Following Chen and Dunson (2003), we use a special LDU decomposition,

which has certain advantages over more commonly used Cholesky and spectral decompositions in

model selection settings due to the conditionally linear structure. The decomposition contains a

diagonal matrix with elements proportional to the standard deviations of the random effects and

a lower triangular matrix related to the correlations among the random effects. Since 0 values for

the standard deviations effectively correspond to random effects being excluded from the model,

we can utilize mixture priors with mass at 0 for random effects selection. In addition, unlike Chen

and Dunson (2003), we also allow zero off-diagonal elements through mixture priors for elements of

the lower triangular matrix of the decomposition. Effectively, the prior allows movement between

models of different dimension, with the covariance matrix of the random effects in each of these

models being positive semi-definite. The details are given in the next section.

2.3 Reparameterization and Mixture Prior Specification

Let σkk, k = 1, . . . , q, denote the diagonal entries of the symmetric random effects covariance Σ,

and let σmk = σkm denote the off-diagonal entries for m = k + 1, . . . , q, k = 1, . . . , q − 1. The

covariance Σ may be factorized as

Σ = ΛΓΓ′Λ,
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where Λ = diag(λ1, . . . , λq), with λk ≥ 0 for k = 1, . . . , q, and Γ denotes lower triangular matrix,



1
γ21 1
...

...
. . .

γq,1 γq,2 · · · 1


 .

After some algebra, the elements of Σ can be expressed as

σkl = λkλl

(
γr2,r1

+
r1−1∑

s=1

γksγls

)
, for k, l = 1, . . . , q, (6)

where r1 = min(k, l), r2 = max(k, l). This expression assures the positive semi-definite constraint

on Σ when λk > 0 for all k. When λk = 0, all the elements of row k and column k of Σ are

zeros so that the submatrix of Σ excluding row k and column k is still positive semi-definite. Such

submatrices correspond to different choices of M , with each Σ positive semi-definite. In this way,

random effects are allowed to effectively drop out of the model.

Let λ = (λ1, . . . , λq)
′ and γ = (γmk : m = k+1, . . . , q; k = 1, . . . , q−1)′. Prior distributions are

placed on λ and γ in the full model, and submodels M are indexed by the 0 elements of λ and γ.

To drop out the off-diagonal elements in the covariance matrix when a random effect is excluded,

the support of the prior for γ is defined as Rλ = {γ : γmk = γkl = 0 if λk = 0, for k = 1, . . . , q,

1 ≤ l < k < m ≤ q, l,m ∈ N}. Since the covariance matrix Σ is a function of λ and γ, the prior

density of Σ is induced through the priors for λ and γ, π(λ,γ) = π(γ|λ)π(λ). The prior for λ

is
∏q

k=1 π(λk), where π(λk) is chosen as mixtures of point masses at zero and a truncated normal

density:

π(λk) = π1,k01(λk = 0) + (1 − π1,k0)1(λk > 0)
N(λk;µ1,k0, σ

2
1,k0)

F(0;−µ1,k0, σ
2
1,k0)

, (7)

where π1,k0, µ1,k0 and σ2
1,k0 are hyperparameters specified by investigators, and F(·) is the normal

distribution function. We refer to prior (7) as a zero-inflated positive normal density, ZI-N+(λk;π1,k0,

µ1,k0, σ
2
1,k0). The prior probability of the kth random effect being excluded is π1,k0 = Pr(H0k : λk =

0). The prior probability of the global null hypothesis of homogeneity is Pr(H0 : λ1 = . . . = λq =

0) =
∏q

k=1 π1,k0, which implies that all random effects are excluded from the model.

To allow fixed effect predictors to effectively drop out of the model, we also choose a zero-

inflated normal density, ZI-N(βv |π2,v0, µ2,v0, σ
2
2,v0), as the prior for βv , for v = 1, . . . , p. The prior
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probability of the vth predictor being excluded is then π2,v0 = Pr(βv = 0). Similar mixture priors

have been widely used in the Bayesian variable selection literature (cf. Geweke, 1996).

We also allow zero off-diagonal elements in the covariance matrix by choosing mixture pri-

ors with masses at 0 for the γ’s. We choose a zero-inflated normal density, ZI-N(γmk;π3,mk,0,

µ3,mk,0, σ
2
3,mk,0), with the constraint related to λ, as the prior for γmk, for m = k + 1, . . . , q and

k = 1, . . . , q − 1. This mixture prior fixes the prior probability of γmk = 0 to be π3,mk,0. In this

way, the correlations between the random effects can be zero or non-zero. Explicitly, from (6), the

correlation coefficient between the mth and the kth random effects is

ρ(ζim, ζik;γ) =
γmk +

∑k−1
s=1 γksγms√

(1 +
∑m−1

s=1 γ2
ms)(1 +

∑k−1
s=1 γ

2
ks)

. (8)

So the prior probability that the two random effects are uncorrelated is

Pr{ρ(ζim, ζik) = 0} = Pr{γm1γk1 = · · · = γm,k−1γk,k−1 = γmk = 0}

= π3,mk,0

k−1∏

s=1

[π3,ms,0(1 − π3,ks,0) + π3,ks,0].

Note that the expression for the correlation coefficients, ρ(ζim, ζik), for any two random effects that

have non-zero variance (λm > 0, λk > 0) does not involve λ.

2.4 An Approximation

In implementing Bayesian model selection, it is necessary to calculate the marginal likelihood of y

conditional on the parameters by integrating out the random effects:

L(β, φ,Σ;y,X,Z) =

∫

<q
π(y|β, φ, ζ,X,Z)π(ζ|Σ)dζ. (9)

Let l(β, φ,Σ;y) = logL(β, φ,Σ;y), suppressing the conditioning on X and Z as shorthand. To

approximate (9), the classical way is Laplace’s approximation (Solomon and Cox, 1992; Breslow

and Clayton, 1993; Lin, 1997; Chipman et al., 2003, among others). From (6), we note that Σ

depends on the standard deviation of random effects which is proportional to λ. When λ = 0, the

likelihood (9) reduces to ordinary GLM likelihood with Σ = 0. We assume that the moments of

the random effects ζ with order higher than two have order o(λ). This is reasonable for Maclaurin
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series, the special case of Taylor series. We begin by approximating the first integrand of (9) by

taking a second order Taylor series expansion at E(ζ) = 0, the mean of the random effects:

L(β, φ, ζ;y) ≈ L(β, φ, ζ = 0;y) +
∂L(β, φ, ζ;y)

∂ζ

∣∣∣∣
ζ=0

ζ +
1

2
ζ ′∂

2L(β, φ, ζ;y)

∂ζ∂ζ ′

∣∣∣∣
ζ=0

ζ

= L(β, φ, ζ = 0;y)

{
1 +

∂l(β, φ, ζ;y)

∂η

∣∣∣∣
ζ=0

Zζ +
1

2
(Zζ)′

[(
∂l(β, φ, ζ;y)

∂η

∂l(β, φ, ζ;y)

∂η′

+DG

[
∂2l(β, φ, ζ;y)

∂η∂η′

])∣∣∣∣
ζ=0

]
Zζ

}
,

where η = Xβ + Zζ, and DG(A) denotes a diagonal matrix with diagonal entries of A. We note

that (9) is actually the expectation of L(β, φ, ζ;y) with respect to ζ. Thus the approximation

L̃(β, φ,Σ;y) can be expressed as

L̃(β, φ,Σ;y) = L0

{
1 +

1

2
tr

[
Z′

(
∂l(β, φ, ζ;y)

∂η

∂l(β, φ, ζ;y)

∂η′
+ DG

[
∂2l(β, φ, ζ;y)

∂η∂η′

])∣∣∣∣
ζ=0

ZΣ∗
]}
,(10)

where L0 = L(β, φ, ζ = 0;y), which denotes the likelihood for the ordinary GLM, tr(A) denotes

the trace of matrix A, and Σ∗ = In ⊗Σ, the Kronecker product of In and Σ. The second term in

(10) involves the first and second derivative calculations. Thus, the approximation (10) is tractable,

since the first and second derivatives of l(β, φ, ζ|y) are easily obtained as follows

∂l(β, φ, ζ|y)

∂η
=

(
y −

∂ψ(h(η))

∂h(η)

)
∂h(η)

φ∂η

∂2l(β, φ, ζ|y)

∂η∂η′
=

(
y −

∂ψ(h(η))

∂h(η)

)
∂2h(η)

φ∂η∂η′
−

∂2ψ(h(η))

φ∂h(η)∂h(η′)

∂h(η)

∂η

∂h(η)

∂η′
.

Then, in general, the approximation L̃(β, φ,Σ;y) may be expressed as

L0

{
1 +

1

2φ

{ q∑

k=1

σkk

n∑

i=1

B
(1)
i,k + 2

q−1∑

k=1

q∑

m=k+1

σmk

n∑

i=1

B
(2)
i,m,k

}}
, (11)

where B
(1)
i,k and B

(2)
i,m,k are functions of β related to response variable y, fixed effect predictors X,

and the random effect predictors Z, and vary for particular GLMMs. In detail, the approximation

(11) may be shown as

L0

{
1 +

1

2φ

{ q∑

k=1

λ2
k

(
1 +

k−1∑

s=1

γ2
ks

) n∑

i=1

B
(1)
i,k + 2

q−1∑

k=1

q∑

m=k+1

λkλm

(
γmk +

k−1∑

s=1

γksγms

) n∑

i=1

B
(2)
i,m,k

}}
.(12)

This form gives a general analytically tractable form for GLMMs which simplifies the subse-

quent computation. The general result can be applied in a straightforward manner to any particular
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special case (e.g. logistic regression, Poisson, log linear models, etc). The detailed marginal distri-

butions for normal linear, logistic regression and Poisson models are provided in the Appendix.

If covariance matrix components for random effects are in some sense relatively small, the

approximation (11) may be rewritten as

L0 exp

{
1

2φ

{ q∑

k=1

σkk

n∑

i=1

B
(1)
i,k + 2

q−1∑

k=1

q∑

m=k+1

σmk

n∑

i=1

B
(2)
i,m,k

}}
. (13)

3. Posterior Computation

We choose priors for β, λ and γ as described in Section 2.3. For binomial and Poisson likelihoods,

the scale or dispersion parameter is φ = 1. For normal linear models, φ is σ2, and we follow common

practice in choosing a gamma prior, G(c0, d0), for σ−2. Posterior computation relies on a stochastic

search variable selection (SSVS) Gibbs sampling algorithm (George and McCulloch, 1993) in which

we iteratively sample from the full conditional distributions of each of the parameters. For β, λ and

γ, these posteriors will have a mixture structure consisting of point mass at 0 and non-conjugate

distributions. In calculating the point mass probabilities, we rely on the approximation described

in Section 2.4. To sample from the non-conjugate distribution, we use adaptive rejection Metropolis

sampling (Gilks et al., 1995). One can use an alternative non-rejection-based sampling algorithm

via latent variables proposed by Damien, Wakefield and Walker (1999).

Let δ1,k denote an indicator variable which is one if H0k holds and zero if the alternative

hypothesis holds. The prior distribution for δ1,k is clearly Bernoulli(π1,k0). Let latent variable λk

be (1 − δ1,k)λ̃k for k = 1, . . . , q. The prior distribution (7) may result from the following prior:

π(λ̃, δ1) =
q∏

k=1

[
N(λ̃k|µ1,k0, σ

2
1,k0)π

δ1,k

1,k0(1 − π1,k0)
1−δ1,k

]
.

Similar settings can be applied to γ and β. After specifying initial values for parameters, the

algorithm iterates through the following steps a large number of times:

Step 1: Sample λ̃k from its full conditional posterior distribution, which is

1(λ̃k > 0)L̃(β, λ̃k,λ(−k),γ, φ;y)N(λ̃k;µ1,k0, σ
2
1,k0), (14)
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where the conditional probability of λ̃k = 0 is approximated by

π̃1,k =
π1,k0

π1,k0 + (1 − π1,k0)C1,k

, (15)

with C1,k = L̃(β, λk = λ̃k,λ(−k),γ, φ;y)/L̃(β, λk = 0,λ(−k),γ, φ;y), where λ(−k) = (λ1, . . . ,

λk−1, λk+1, . . . , λq)
′. Sampling from (15) can proceed by first sampling δ1,k from a Bernoulli

(π̃1,k). If δ1,k equals one, then let λk = 0 and exclude the kth random effect. Otherwise

sample λ̃k for λk from L̃(β, λ̃k,λ(−k),γ, φ;y)N(λ̃k;µ1,k0, σ
2
1,k0).

Step 2: Sample γ̃mk(m > k) from its full conditional posterior distribution, which is

1(γ̃mk 6= 0)L̃(β,λ, γ̃mk,γ(−mk), φ;y)N(γ̃mk;µ3,mk,0, σ
2
3,mk,0), (16)

where the conditional probability of γ̃mk = 0 is approximated by

π̃3,mk =
π3,mk,0

π3,mk,0 + (1 − π3,mk,0)C3,mk
, (17)

with C3,mk = L̃(β,λ, γ̃mk,γ(−mk), φ;y)/L̃(β,λ, γ̃mk = 0,γ(−mk), φ;y), where γ(−mk) = (γm′k′ :

m′ = k′ + 1, . . . , q; k′ = 1, . . . , k − 1, k + 1, . . . , q − 1)′. Sampling from (17) can proceed again

by first sampling from a Bernoulli (π̃3,mk). If this sample equals one, then let γmk = 0. Oth-

erwise sample γ̃mk for γ̃mk from L̃(β,λ, γ̃mk,γ(−mk), φ;y)N(γ̃mk;µ3,mk,0, σ
2
3,mk,0). However,

if λm = 0 or λk = 0, γmk = 0 according to its constraint related to λ.

Step 3: Sample β̃v from its full conditional posterior distribution, which is

1(β̃v 6= 0)L̃(β̃v ,β(−v),λ,γ, φ;y)N(β̃v ;µ2,v0, σ
2
2,v0), (18)

where the conditional probability of β̃v = 0, v = 1, . . . , p, is approximated by

π̃2,v =
π2,v0

π2,v0 + (1 − π2,v0)C2,v
, (19)

with C2,v = L̃(β̃v,β(−v),λ,γ, φ;y)/L̃(β̃v = 0,β(−v),λ,γ, φ;y), where β(−v) = (β1, . . . , βv−1,

βv+1, . . . , βp)
′. Sampling from (19) can proceed again by first sampling from a Bernoulli

(π̃2,v). If this sample equals one, then let βv = 0. Otherwise sample β̃v for βv from

L̃(β̃v ,β(−v),λ,γ, φ;y)N(β̃v ;µ2,v0, σ
2
2,v0).
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Step 4: Sample σ−2, if φ = σ2, from its full conditional distribution: G(σ−2; c0, d0)L̃(β,λ,γ, σ−2;y).

Samples from the joint posterior distribution of the parameters are generated by repeating these

steps for a large number of iterations after apparent convergence.

By varying the elements of λ, β and γ that are assigned 0 values, the algorithm effectively

generates samples from the posterior distribution ofM . As in SSVS algorithms for linear regression,

we do not visit all the possible models in M, since this number is typically enormous. Instead,

by stochastically making local changes to the model based on (approximated) conditional model

probabilities, we tend to visit models with relatively high posterior probability. However, for very

large model spaces, there is no guarantee that we will visit the best model in M. In addition, there

may be a large number of models which have similar posterior probability. Hence, inferences are

often based on marginal posterior probabilities of excluding a particular predictor from the fixed

and/or random effects components.

Posterior model probabilities can be estimated by averaging indicator variables across iterations

collected after apparent convergence. For example, to estimate the posterior probability of the kth

random effect being excluded, one can simply add up the number of iterations for which λk = 0 and

divide by the total number of iterations. An alternative method is to use a Rao-Blackwell estimator

P̂r(λk = 0|data) = 1
S

∑S
s=1 π̃

(s)
1,k, where π̃

(s)
1,k is the value of π̃1,k at iteration s, for s = 1, . . . , S. This

estimator is potentially more efficient. The same approach can be used to calculate posterior

probabilities of excluding predictors from the fixed effect component. To estimate the posterior

probability that two random effects are uncorrelated given that they are both in the model (e.g.

σmk = 0), one can use the following estimator:

P̂r(σmk = 0|λm > 0, λk > 0,data) =

∑
s:λm>0,λk>0 1{ρ(ζim, ζik;γ

(s)) = 0}
∑S

s=1 1(λm > 0, λk > 0)
,

so that we calculate the proportion of samples for which the random effects are uncorrelated from

among the samples for which both random effects are in the model.

When (13) holds, the more explicit full conditional posterior distributions for some parameters

and latent variables can be derived from the joint posterior distribution (refer to Appendix B).
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4. Simulation Studies

We carried out a simulation study to evaluate the behavior of the procedure. Simulated data based

on different random effects covariance structures are generated from the GLMM with identity link,

logistic link, and log link. We consider 100 subjects, each of which has 6 observations. The num-

bers of candidate predictors in the two components, p and q, are chosen as p = q = 3, 5 or 8. The

covariates are xij = (xij1, . . . , xijp)
′, where xij1 = 1 and xijk ∼ Bernoulli(0.5), for i = 1, . . . , 100,

j = 1, . . . , 6, k = 2, . . . , p. Let zij = xij , β(−2) ∼ N(0, I), β2 = 0, and ζi = (ζi1, . . . , ζiq)
′ ∼

N(0,Σ), where Σ = ΛΓΓ′Λ with different structures which are (1) λ = (1.2, 0.4, 0.6)′ and

γ = (0.4, 0.5, 0.3)′ ; (2) λ = (0.2, 0, 0.7, 0, 0.5)′ and γ = (0, 0.4, 0, 0, 0, 0, 0.8, 0, 0.1, 0)′ ; (3) λ =

(0.5, 0.8, 0.9, 0.2, 0.1, 0.1, 0.6, 0)′ and γ = (0.3, 0.6, 0.5, 0.4, 0.2, 0.1, 0.2, 0.3, 0.4, 0.3, 0.6, 0.1, 0.2, 0.1,

0.8, 0.3, 0.4, 0.8, 0.6, 0.3, 0.2, 0, 0, 0, 0, 0, 0, 0)′ . The corresponding covariance matrices for random ef-

fects are shown in the first row in Figure 1. For the GLMM with identity link, yij ∼ N(x′
ijβ +

z′ijζi, σ
−2) with σ−2 = 2. For the GLMM with logistic link, yij ∼ Bernoulli(πij) with logit(πij) =

x′
ijβ + z′ijζi. For the GLMM with log link, yij ∼ Poisson(λij) with log(λij) = x′

ijβ + z′ijζi.

We chose the prior distribution for λk as ZI-N+(λk;π1,k0, 0, 10). The prior distributions for the

elements of γ are chosen to be mixture priors, ZI-N(γmk;π3,u0, 0, 1), with the constraint related

to λ. A mixture prior distribution for βv is chosen as ZI-N(βv ;π2,k0, 0, 100). A diffuse prior for

parameter σ−2 is chosen to be G(0.08, 0.08). To study the effect of the prior probabilities of λk = 0,

βv = 0 and γmk = 0 on the estimated posterior probabilities, we consider 0.2, 0.5, 0.8 for these

prior probabilities.

For each simulated data set and choice of prior, we ran the Gibbs sampling algorithm described

in Section 3 for 20,000 iterations after a 2000 burn-in. The diagnostic tests were carried out by

using Geweke (1992) and Raftery and Lewis (1992), which showed rapid convergence and efficient

mixing. A sample of size 4000 was obtained by thinning the MCMC chain by a factor of 5. For

each simulated data set, we calculated (i) the posterior probabilities for the possible submodels

under each link; and (ii) the estimated posterior means and the 95% credible intervals for each of

the parameters.
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Figure 1 displays image plots of the true covariance matrices for random effects corresponding

to the simulated data and the estimated covariance matrices under each link. Table 2 shows the

estimated posterior probabilities for the preferred subsets of fixed and random effect predictors for

different simulation studies with different prior probabilities for λk = 0, βv = 0 and γmk = 0 under

logistic link. We note that under the logistic link, although the estimated posterior probabilities

change slightly according to the prior probabilities of λk = 0, βv = 0 and γmk = 0, it is evident

that the preferred model agrees with the true model specification regardless of the choices of π1,k0,

π2,v0 and π3,u0. The results under the identity and log links are similar to those under logistic link,

though we do not show them here. Figure 2 presents boxplots of the samples of parameters for

the second simulation under each link. The true values of all parameters fall in the 95% credible

intervals.

To study the accuracy of the approximation proposed in Section 2.4, we consider a simple

GLMM with identity link. Similarly, we consider 100 subjects, each of which has 6 observations,

and p and q are chosen as 3. We choose different covariance structures with standard deviation

components proportional to λ from small to large, which are 1) λ = (0.01, 0.02, 0.005) ′ ; 2) λ =

(1.2, 0.4, 0.6)′ ; 3) λ = (2.8, 4.3, 3.5)′ ; 4) λ = (27.5, 20.6, 35.1)′ ; 5) λ = (50.6, 30.8, 60.3)′ . γ is

kept fixed at (0.4, 0.5, 0.3)′ . We calculate the marginal likelihoods of the simulated data by using

different methods, including exact calculation, Laplace approximation, importance sampling, and

Chib’s marginal likelihood method. For more details, see Sinharay and Stern (2001) and the

references therein. Table 1 shows the results which show that all methods work basically the same.

Sensitivity of the results to the prior specification was assessed by repeating the analyses with

the following different hyperparameters: (a) priors with variance /2; (b) priors with variance ×2;

(c) priors with moderately different means. Although we do not show details, inferences for all

models are robust to the prior specification. The ranges in Table 2 illustrate this robustness.

5. Time-to-pregnancy Application

We illustrate the methodology through application to the time-to-pregnancy (TTP) study men-

tioned in Section 1. Female dental assistants, aged 19 to 39, were randomly selected from the
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dental-assistants registry of the California Department of Consumer Affairs. 427 women provided

detailed data on reproductive and contraceptive history, occupational exposures, and other factors

related to fertility. Rowland et al. (1992) found an increased number of hours of exposure to un-

scavenged nitrous oxide was associated with decreased fecundability, the probability of conception

within a single menstrual cycle with noncontracepted intercourse. Reanalyses were presented by

Weinberg et al. (1993) and Dunson and Neelon (2003). These articles allow baseline heterogeneity

in fecundability by allowing the hazard to change as the number of cycles attempting increases,

but do not allow heterogeneity to vary with predictors.

Our goal is not only to assess covariate effects on fecundability, but also to identify factors that

vary in their effects across women. To this end, we modeled the discrete-time hazard of conception

using the logistic GLMM of expression (1), with candidate predictors including category indicators

for age (19-24, 25-29, >30), intercourse frequency per week (<=1, 1-3, 3-4, >4), cigarettes smoked

per day (nonsmoker, 1-5, 6-10, 11-15, >15), and the use of oral contraceptives in the cycle prior to

beginning the pregnancy attempt (no, yes).

Let yij denote the pregnancy status (0 = no, 1 = yes) for woman i at the jth menstrual

cycle, j = 1, . . . , Ti, Ti ∈ {1, . . . , 13} (women not conceiving by cycle 13 are censored), and xij =

(xij1, . . . , xij14)
′, where xij1 = 1, and xij2, . . . , xij14 are categories of the predictors in the above

order. To allow each regression coefficient to possibly vary across women, we let zij = xij . The

prior distribution for λk is chosen as ZI-N+(λk|πk0, 0, 20). The prior distribution for βv is chosen

as ZI-N(βv |πv0, 0, 100). To reflect a somewhat diffuse prior on the correlations, we choose the prior

distributions for the elements of γ as ZI-N(γmk;π3,u0, 0, 1) with the constraint on λ. A diffuse prior

for parameters σ−2 is chosen to be G(0.08, 0.08). We ran 80,000 iterations after a 10,000 burn-in.

The chains passed Geweke (1992) and Raftery and Lewis (1992) convergence diagnostic tests. We

retained every 20th sample for inferences of interest.

Table 3 presents the marginal posterior probabilities of including each predictor in the fixed

and random effects components under different choices of π1,k0 and π2,v0. The overall posterior

probability of including age in the fixed effect component can be calculated as the posterior prob-
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ability that any of the category indicators for age are included. Such overall posterior probabilities

are calculated separately for the fixed and random effect components for each of the factors under

consideration, including age, intercourse frequency, cigarettes smoked, and recent pill use. The

results are shown in Table 3. The posterior probability of including age in the fixed effect compo-

nent ranges from 0.95-0.97 (average = 0.96) depending on the prior. The corresponding ranges for

intercourse frequency, cigarettes smoked, and recent pill use are 0.96-0.97 (average = 0.96), 0.92-

0.97 (average = 0.94), and 0.87-0.98 (average = 0.92), respectively. Hence, as expected, there is

some evidence that age, intercourse frequency, cigarette smoking, and recent pill use are predictive

of fecundability on average, with the most evidence for age and intercourse frequency. The age

effect is most apparent in women over 30+. In addition, the indicators for the highest categories of

intercourse frequency (4+ acts/week) and cigarette smoking (15+/day) had the highest posterior

probabilities of inclusion.

For the random effect component, the results were somewhat different. The posterior prob-

ability of inclusion for recent pill use ranged between 0.40 and 0.53 (average = 0.47), so there is

no evidence of heterogeneity in the effect of recent pill use. However, there was some evidence of

heterogeneity among women in the effects of each of the other factors. In particular, the posterior

probability of including age in the random effect component ranged between 0.87 and 0.92 (average

= 0.90), which is suggestive but not clear evidence. There was slightly more evidence of hetero-

geneity in the effects of intercourse frequency and cigarette smoking with the posterior probabilities

of inclusion for these two factors ranging between 0.90-0.93 (average = 0.92) and 0.91-0.95 (average

= 0.93), respectively.

Variability among women in the effect of age may be due to differences in the rate of decline

of viable ova, or possibly due to environmental exposures. Selection by pregnancy history may

also play a role, since some highly fertile couples may achieve their desired family size by younger

ages. Heterogeneity in the aging effect has important implications for couples planning pregnancy,

particularly given the growing concern that infertility may result if women delay attempting until

their mid or late 30s. Heterogeneity in the impact of intercourse frequency and exposures, such as
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smoking and recent pill use, are also extremely interesting. We plan to verify these preliminary

results using larger data sets.

Table 4 provides the overall posterior summaries of the regression coefficients from our approach

compared with the standard GLM with the logistic link. It is clear that there are no systematic

differences between our model-averaged Bayesian point and interval estimates for the regression

coefficients and the maximum likelihood estimates. This should be reassuring to frequentist statis-

ticans that our prior choice has minimal impact on estimation, while facilitating inferences.

We ran extensive sensitivity analyses to evaluate the robustness of the results to the prior

specifications by repeating the analyses with the following different hyperparameters: (a) priors

with variance /2; (b) priors with variance ×2; (c) priors with moderately different means within

the range of the prior expectation. The ranges in Table 3 show the results for all of the different

priors.

6. Discussion

In this article, we propose a Bayesian approach to the problem of random effects covariance selection

in GLMMs. By using variable selection-type mixture priors for the fixed effect coefficients and

the components in a special LDU decomposition of the random effects covariance, we develop an

SSVS Gibbs sampling algorithm to avoid the overwhelming problem of calculating the posterior

probabilities of all 2p
∑q

k=0

(q
k

)
2

1

2
(q−k)(q−k−1) submodels.

Since GLMMs extend GLMs to accommodate both non-normal response distributions and non-

linear transformations of linear models containing random effects, there are a number of members

included in this family. It is too often the case in the analysis of longitudinal and clustered data that

investigators focus overly-much on the fixed effects, while considering the dependency structure as

a nuisance. In a broad variety of applications, it is important and necessary to expand inferences

under GLMMs to include the random effects covariance. This is certainly the case not only in

fecundability studies, as we have illustrated, but also in general epidemiologic studies. In fact,

in certain cases, such as family studies of heritability (Guo and Wang, 2002), inferences on the

covariance structure are of primary interest. Since current methods for such inferences are limited
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to criterion-based methods and simple score and likelihood ratio tests, our proposed Bayesian

stochastic search approach should prove useful, both for model selection and for averaging across

the (often extremely-high dimensional) set of possible models.

Although we have focused on settings in which the same type of outcome is measured repeatedly,

the methods can also be used for covariance structure (or graphical) modeling of mixed scale and

non-Gaussian variables. It is increasingly the case that interest focuses on very high-dimensional

variables, such as are collected in genomic applications. Unfortunately, our approach is limited in

the dimension that can feasibly be considered.

In our analysis, the execution time increases with p = q at a rate proportional to roughly the

cube of the number of predictors. An important area for future research is the development of

methods for large and high-dimensional data. When sample sizes are modest compared with the

number of models under consideration, there can be sensitivity to the choice of priors. Although

we have described subjective priors, it would be useful to consider reference and default-type priors

in this setting.

APPENDIX A

The normal linear mixed model of Laird and Ware (1982) is a special case of a GLMM having

g(µij) = µij = ηij = x′
ijβ + z′ijζi, φ = σ2 and ψ(θij) = η2

ij/2. In this case, ∂l(β,φ,ζ|y)
∂η

∂l(β,φ,ζ|y)
∂η′ =

(y − η)(y − η)′/σ2 and
∂2l(β,φ,ζ|y)

∂η∂η′ = −1N1′
N/σ

2. Therefore we have

B
(1)
i,k = ((yi −Xiβ)′Zik)

2 − Z ′
ikZik

B
(2)
i,m,k = (yi −Xiβ)′ZimZ

′
ik(yi −Xiβ) − Z ′

ikZim,

where Zik denotes the kth column of Zi, and L0 = exp { − 1
2σ2

∑n
i=1

∑ni

j=1(yij − x′
ijβ)2}.

When yij are 0-1 random variables, the logistic regression model can be obtained by the canoni-

cal link function g(πij) = log
πij

1−πij
= ηij = x′

ijβ+z′ijζi, φ = 1, ψ(θij) = log(1+eηij ) = −log(1−πij),

hence
∂l(β,φ,ζ|y)

∂η
∂l(β,φ,ζ|y)

∂η′ = (y − π)(y − π)′ and
∂2l(β,φ,ζ|y)

∂η∂η′ = −π(1N − π)′. Then

B
(1)
i,k = ((yi − πi)

′Zik)
2 − π′

iDG(ZikZ
′
ik)(1ni

− πi)

B
(2)
i,m,k = (yi − πi)

′ZimZ
′
ik(yi − πi) − π′

iDG(ZimZ
′
ik)(1ni

− πi),
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where πi = (πi1, . . . , πini
)′ with πij = exp(x′

ijβ)/(1 + exp(x′
ijβ)), and L0 = exp {yijlog

πij

1−πij
+

log(1 − πij)}.

Similarly, when yij are counts with mean λij , the Poisson regression model can be obtained

by the canonical link function g(λij) = logλij = ηij = x′
ijβ + z′ijζi, φ = 1, ψ(θij) = eηij = λij ,

∂l(β,φ,ζ|y)
∂η

∂l(β,φ,ζ|y)
∂η′ = (y − λ)(y − λ)′ and ∂2l(β,φ,ζ |y)

∂η∂η′ = −λ1′
N . Then we obtain that

B
(1)
i,k = ((yi − λi)

′Zik)
2 − λ′

iDG(ZikZ
′
ik)1ni

B
(2)
i,m,k = (yi − λi)

′ZimZ
′
ik(yi − λi) − λ′

iDG(ZimZ
′
ik)1ni

,

where λi = (λi1, . . . , λini
)′ with λij = exp(x′

ijβ), and L0 = exp {yijlogλij − λij − logyij!}.

APPENDIX B

The full conditional posteriors for the parameters in Section 2.4 when (13) holds:

Step 1: Sample λ̃k, k = 1, . . . , q from its full conditional distribution,

1(λ̃k > 0)C1,kN(λ̃k;µ1,k0, σ
2
1,k0),

where

C1,k = exp

{
λ̃k

2φ

n∑

i=1

{
λ̃k

(
1 +

k−1∑

s=1

γ2
ks

)
B

(1)
i,k + 2

q∑

t=1,t6=k

λt

(
γw(t,k) +

r−1∑

s=1

γksγts

)
B

(2)
i,w(t,k)

}}
,

with r = min(t, k), γw(t,k) equals γkt if t < k and γtk otherwise, and B
(2)
i,w(t,k) denotes B

(2)
i,k,t if

t < k and B
(2)
i,t,k otherwise.

Step 2: Sample γ̃mk for m > k from its full conditional distribution which is proportional to

exp

{
λmγ̃mk

φ

n∑

i=1

{
1

2
λmγ̃mkB

(1)
i,m +

q∑

t=k,t6=m

λtγtkB
(2)
i,w(t,m)

}}
N(γ̃mk;µ3,mk,0, σ

2
3,mk,0).

Step 4: Sample σ−2, if φ = σ2, from the full conditional distribution: G(c0, d0−log(L̃(β,λ,γ, φ;y)/L0)).
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Table 1: Comparison of approximated log marginal likelihoods for the GLMM with identity link

λ Chib’s Exact I.Sampling Laplace Proposed

(0.01, 0.02, 0.005) -621.6 -621.6 -621.6 -621.6 -621.6

(1.2, 0.4, 0.6) -539.1 -539.0 -539.0 -539.1 -539.1

(2.8, 4.3, 3.5) -497.9 -497.9 -498.0 -498.0 -498.2

(27.5, 20.6, 35.1) -426.3 -426.2 -426.2 -426.3 -426.4

(50.6, 30.8, 60.3) -459.8 -459.7 -459.8 -459.9 -460.1

25



Table 2: Estimated model posterior probabilities in simulation studies under logistic link. Sub-

models with posterior probability less than 0.02 are not displayed.

π1,k0

Model 0.2 0.5 0.8

Simulation 1

x1, x3, z1, z2, z
a
3 0.833b

(0.814,0.865)c 0.796(0.771,0.828) 0.748(0.719,0.782)

x1, x3, z1, z3 0.085(0.054,0.116) 0.098(0.083,0.115) 0.116(0.098,0.141)

x1, x3, z1, z2 0.066(0.045,0.092) 0.070(0.046,0.095) 0.082(0.059,0.106)

Simulation 2

x1, x3, x4, x5, z1, z3, z
a
5 0.437(0.421,0.544) 0.519(0.483,0.558) 0.568(0.543,0.591)

x3, x4, x5, z1, . . . , z5 0.106(0.075,0.140) 0.095(0.068,0.131) 0.084(0.048,0.112)

x1, x3, x4, x5, z3, z5 0.103(0.076,0.135) 0.139(0.110,0.180) 0.177(0.138,0.218)

x3, x4, x5, z1, z3, z4, z5 0.024(0.013,0.037) 0.039(0.026,0.054) 0.052(0.037,0.078)

x2, . . . , x5, z1, . . . , z4 0.022(0.010,0.035) 0.037(0.020,0.053) 0.045(0.024,0.066)

Simulation 3

x1, x3, . . . , x8, z1, . . . , z
a
7 0.547(0.529,0.577) 0.581(0.550,0.617) 0.633(0.602,0.658)

x1, x3, . . . , x8, z1, . . . , z8 0.090(0.079,0.106) 0.075(0.065,0.089) 0.064(0.053,0.075)

x1, x3, . . . , x7, z1, . . . , z4, z6, z7 0.051(0.043,0.059) 0.074(0.066,0.085) 0.078(0.070,0.089)

x1, x3, . . . , x7, z1, . . . , z5, z7 0.032(0.027,0.041) 0.034(0.024,0.042) 0.037(0.030,0.041)

x1, x3, . . . , x7, z1, . . . , z4, z7 0.025(0.013,0.039) 0.027(0.018,0.037) 0.032(0.023,0.044)

x1, . . . , x7, z1, . . . , z3, z7 0.023(0.011,0.033) 0.025(0.014,0.035) 0.028(0.016,0.040)

a True model
b Posterior probability
c Range
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Table 3: Estimated marginal posterior probabilities of including predictors in the fixed and ran-

dom effects components under different prior probabilities of being zero in the time-to-pregnancy

application. Probabilities over 0.9 are written in bold.

Posterior Probability of Inclusion

Fixed Effect Random Effect

Predictor 0.2 0.5 0.8 0.2 0.5 0.8

Intercept 0.90(0.89,0.94)a 0.87(0.85,0.90) 0.83(0.81,0.87) 0.94(0.90,0.96) 0.90(0.86,0.92) 0.85(0.82,0.87)

Age

25-29 0.83(0.80,0.85) 0.75(0.73,0.78) 0.72(0.69,0.75) 0.55(0.52,0.58) 0.50(0.46,0.52) 0.43(0.39,0.46)

30+ 0.93(0.90,0.96) 0.89(0.86,0.92) 0.87(0.84,0.90) 0.88(0.84,0.91) 0.86(0.83,0.90) 0.81(0.76,0.84)

Overall 0.97(0.94,0.99) 0.96(0.94,0.98) 0.95(0.93,0.97) 0.92(0.89,0.95) 0.90(0.87,0.92) 0.87(0.84,0.91)

Intercourse
frequency

1-3 0.63(0.61,0.66) 0.56(0.54,0.59) 0.53(0.49,0.56) 0.61(0.56,0.64) 0.56(0.52,0.59) 0.52(0.49,0.56)

3-4 0.76(0.73,0.79) 0.73(0.71,0.76) 0.68(0.65,0.71) 0.83(0.78,0.87) 0.78(0.75,0.82) 0.74(0.70,0.78)

4+ 0.97(0.93,0.98) 0.94(0.91,0.96) 0.88(0.85,0.91) 0.54(0.49,0.57) 0.50(0.45,0.53) 0.44(0.40,0.48)

Overall 0.97(0.94,0.99) 0.96(0.94,0.98) 0.96(0.93,0.98) 0.93(0.90,0.96) 0.92(0.89,0.94) 0.90(0.86,0.93)

Cigarettes
smoked

1-5 0.70(0.68,0.73) 0.65(0.62,0.67) 0.56(0.52,0.59) 0.61(0.59,0.65) 0.55(0.52,0.59) 0.51(0.47,0.53)

6-10 0.85(0.81,0.88) 0.81(0.77,0.83) 0.74(0.72,0.78) 0.89(0.85,0.92) 0.85(0.82,0.88) 0.82(0.77,0.85)

11-15 0.86(0.82,0.88) 0.79(0.76,0.82) 0.70(0.67,0.74) 0.57(0.53,0.61) 0.52(0.49,0.55) 0.49(0.46,0.54)

15+ 0.95(0.92,0.97) 0.92(0.89,0.94) 0.88(0.84,0.91) 0.69(0.65,0.75) 0.66(0.62,0.70) 0.61(0.58,0.65)

Overall 0.97(0.94,0.99) 0.94(0.91,0.98) 0.92(0.89,0.95) 0.95(0.93,0.98) 0.92(0.89,0.95) 0.91(0.87,0.94)

Recent
pill use 0.98(0.96,0.99) 0.91(0.87,0.95) 0.87(0.85,0.91) 0.53(0.48,0.59) 0.48(0.43,0.51) 0.40(0.37,0.45)

a Range
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Table 4: Overall posterior means and 95% credible intervals of regression coefficients in the time-

to-pregnancy application compared with the results from the GLM with the logistic link.

Effects Proposed approach Standard GLM

Age

25-29 0.173(−0.043,0.396) 0.177(−0.068,0.422)

30+ 0.358(0.003,0.727) 0.354(−0.029,0.719)

Intercourse frequency per week

1-3 0.095(−0.144,0.335) 0.088(−0.151,0.327)

3-4 0.258(−0.120,0.643) 0.265(−0.129,0.659)

4+ 0.877(0.402,1.306) 0.885(0.408,1.361)

Cigarettes smoked per day

1-5 −0.119(−0.570,0.313) −0.126(−0.736,0.482)

6-10 −0.278(−0.694,0.241) −0.285(−0.873,0.303)

11-15 −0.425(−1.239,0.337) −0.433(−1.413,0.547)

15+ −0.686(−1.640,−0.164) −0.681(−1.622,0.260)

Use of oral contraceptives −0.923(−1.544,−0.268) −0.931(−1.619,−0.243)
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Figure 1: Image plots of the true and estimated random effects covariance matrices for simulated

data under identity link, logistic link and log link with the number of candidate random effect

predictors being 3, 5 and 8. The darker the color appears, the larger the value of the element is,

with the white color corresponding to zero.
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Figure 2: Boxplots of the samples of parameters for the second simulation under each link. The

solid horizontal lines indicate the true values.
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