A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Evaluating Bayesian Model Visualisations
[article]
2022
Probabilistic models inform an increasingly broad range of business and policy decisions ultimately made by people. Recent algorithmic, computational, and software framework development progress facilitate the proliferation of Bayesian probabilistic models, which characterise unobserved parameters by their joint distribution instead of point estimates. While they can empower decision makers to explore complex queries and to perform what-if-style conditioning in theory, suitable visualisations
doi:10.48550/arxiv.2201.03604
fatcat:wjqltbfrkjgpdao6jfenvqy2pi