Learning for Single-Shot Confidence Calibration in Deep Neural Networks through Stochastic Inferences [article]

Seonguk Seo, Paul Hongsuck Seo, Bohyung Han
2019 arXiv   pre-print
We propose a generic framework to calibrate accuracy and confidence of a prediction in deep neural networks through stochastic inferences. We interpret stochastic regularization using a Bayesian model, and analyze the relation between predictive uncertainty of networks and variance of the prediction scores obtained by stochastic inferences for a single example. Our empirical study shows that the accuracy and the score of a prediction are highly correlated with the variance of multiple
more » ... inferences given by stochastic depth or dropout. Motivated by this observation, we design a novel variance-weighted confidence-integrated loss function that is composed of two cross-entropy loss terms with respect to ground-truth and uniform distribution, which are balanced by variance of stochastic prediction scores. The proposed loss function enables us to learn deep neural networks that predict confidence calibrated scores using a single inference. Our algorithm presents outstanding confidence calibration performance and improves classification accuracy when combined with two popular stochastic regularization techniques---stochastic depth and dropout---in multiple models and datasets; it alleviates overconfidence issue in deep neural networks significantly by training networks to achieve prediction accuracy proportional to confidence of prediction.
arXiv:1809.10877v5 fatcat:bq7hw5si4fd6vp4i2qjdcaq2lm