Global Fusion Attention for Vision and Language Understanding (Student Abstract)

Zixin Guo, Chen Liang, Ziyu Wan, Yang Bai
2021 AAAI Conference on Artificial Intelligence  
We extend the popular transformer architecture to a multimodal model, processing both visual and textual inputs. We propose a new attention mechanism on Transformer-based architecture for the joint vision and language understanding tasks. Our model fuses multi-level comprehension between images and texts in a weighted manner, which could better curve the internal relationships. Experiments on benchmark VQA dataset CLEVR demonstrate the effectiveness of the proposed attention mechanism. We also
more » ... bserve the improvements in sample efficiency of reinforcement learning through the experiments on grounded language understanding tasks of BabyAI platform.
dblp:conf/aaai/GuoLWB21 fatcat:j3s4upai7ba2vngigdcncunrkm