Neural Contourlet Network for Monocular 360° Depth Estimation

Zhijie Shen, Chunyu Lin, Lang Nie, Kang Liao, Yao Zhao
2022 IEEE transactions on circuits and systems for video technology (Print)  
For a monocular 360 image, depth estimation is a challenging because the distortion increases along the latitude. To perceive the distortion, existing methods devote to designing a deep and complex network architecture. In this paper, we provide a new perspective that constructs an interpretable and sparse representation for a 360 image. Considering the importance of the geometric structure in depth estimation, we utilize the contourlet transform to capture an explicit geometric cue in the
more » ... ral domain and integrate it with an implicit cue in the spatial domain. Specifically, we propose a neural contourlet network consisting of a convolutional neural network and a contourlet transform branch. In the encoder stage, we design a spatial-spectral fusion module to effectively fuse two types of cues. Contrary to the encoder, we employ the inverse contourlet transform with learned low-pass subbands and band-pass directional subbands to compose the depth in the decoder. Experiments on the three popular panoramic image datasets demonstrate that the proposed approach outperforms the state-of-the-art schemes with faster convergence. Code is available at https://github.com/zhijieshen-bjtu/Neural-Contourlet-Network-for-MODE.
doi:10.1109/tcsvt.2022.3192283 fatcat:bq4chtkhqjh4bgeqdzora253e4