A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Reduction from Non-Unique Games to Boolean Unique Games
2022
We reduce the problem of proving a "Boolean Unique Games Conjecture" (with gap 1-δ vs. 1-Cδ, for any C > 1, and sufficiently small δ > 0) to the problem of proving a PCP Theorem for a certain non-unique game. In a previous work, Khot and Moshkovitz suggested an inefficient candidate reduction (i.e., without a proof of soundness). The current work is the first to provide an efficient reduction along with a proof of soundness. The non-unique game we reduce from is similar to non-unique games for
doi:10.4230/lipics.itcs.2022.64
fatcat:rj3ym3sajzgzpindld4si65mii