A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Mixture of Mutually Exciting Processes for Viral Diffusion
2013
International Conference on Machine Learning
Diffusion network inference and meme tracking have been two key challenges in viral diffusion. This paper shows that these two tasks can be addressed simultaneously with a probabilistic model involving a mixture of mutually exciting point processes. A fast learning algorithms is developed based on mean-field variational inference with budgeted diffusion bandwidth. The model is demonstrated with applications to the diffusion of viral texts in (1) online social networks (e.g., Twitter) and (2) the blogosphere on the Web.
dblp:conf/icml/YangZ13
fatcat:rdep5z3h3fcgxj4b7lljz666sy