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Abstract

This paper provides evidence regarding high-frequency trader (HFT) trading performance, trading costs,
and effects on market efficiency using a sample of NASDAQ trades and quotes that directly identifies HFT
participation. I find that HFTs engage in successful intra-day market timing, spreads are wider when HFTs
provide liquidity and tighter when HFTs take liquidity, and prices incorporate information from order flow
and market-wide returns more efficiently on days when HFT participation is high.
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1. Introduction

High-frequency trading has become a pervasive feature of the equity markets in a relatively
short period of time. Estimates of high-frequency trading activity levels vary, but are large.
Consistent with this notion, an identified group of high-frequency traders (HFTs) participates in
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68.3% of the of dollar trading volume in the sample I study in this paper. The developments in
market structure (such as decimalization, REG NMS, and automated electronic limit order
books) that have created the circumstances for HFTs to flourish are relatively recent. Our
understanding of the impact of high-frequency trading on market quality is in its infancy, partly
due to its sudden emergence and, until very recently, the lack of high-quality data. There are
widely differing views among market participants, regulators, and the financial media on whether
HFTs are beneficial, neutral, or detrimental. The disagreements regarding their impact on market
quality partly stem from a lack of consensus on the nature of their trading practices. A common
view is that HFTs have taken over the market-making function. Under this scenario, they
generally benefit the market by increasing competition to provide liquidity, but there are still
concerns that they lack the affirmative obligations that bound traditional market-makers and
could cause disruptions by exiting the market at their discretion. HFTs are also thought to engage
in high-frequency arbitrage, which may have the beneficial effect of making prices more
efficient. The alternate perspective is that the liquidity they provide is unreliable, and is
outweighed by disruptive practices they are alleged to employ such as order spoofing, predatory
trading, herding, or overloading market infrastructure with excessive messages.

I provide evidence on these issues by examining HFT trading and market quality impacts in a
sample of NASDAQ trades and quotes that identifies HFT participation. This is the same dataset
used in Brogaard (2012) and Brogaard, Hendershott, and Riordan (forthcoming) [BHR (2013)
hereafter], but I primarily focus on different research questions and where there is overlap,
different empirical strategies are employed that yield additional insights. The first question
I address is what are the sources of HFT profitability? I investigate their market timing
performance. This is important because it helps characterize their strategies to give insights into
their motives for trading, which likely impacts market quality, and also provides evidence on
intraday return predictability. My second research question is what trading costs do HFTs face
when executing their strategies? This provides additional insights into the sources of their
profitability, as well as their decisions on when to supply and demand liquidity. Examining the
permanent price impacts of HFT trades also tests theoretical predictions that they impose high
adverse selection costs on other traders when demanding liquidity and avoid being adversely
selected when providing liquidity. Finally, what impact do HFTs have on market quality?
I address this question from the perspective of market efficiency. If HFTs act primarily as
liquidity providers or arbitrageurs, we might expect their activity to make prices more efficient,
while some of the disruptive strategies they are thought to employ could have the opposite effect.

My main findings are as follows. HFT trading performance as measured in a Volume-
Weighted Average Price (VWAP) analysis reflects successful market timing, and this
performance is surprisingly strong at longer horizons than might be expected. Trading costs
are unconditionally very low in this sample, but spreads are wider on trades where HFTs provide
liquidity and tighter on trades where HFTs take liquidity, suggesting that HFTs provide liquidity
when it is scarce and consume liquidity when plentiful. I investigate theories that HFTs impose
higher adverse selection costs on slower traders and face less adverse selection themselves, and
find mixed results that are only significant for specific subsamples and trade types. Prices are
more efficient on days when HFTs are more active in a given stock, in the sense that it takes less
time for stock prices to incorporate information from order flow and market index returns. This
result is driven by HFT liquidity-demanding trades.

These findings should be interpreted with caution. As discussed in more detail below, the
sample does not identify the activity of all HFTs, and contains only NASDAQ continuous
trading activity in the sample stocks. The sample stocks are traded in multiple venues, and are
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presumably traded by the sample HFTs in other venues. Also, the NASDAQ exchange is
organized as an electronic limit order book with price and time priority, partial pre-trade
transparency,1 post-trade transparency, anonymity, and a maker-taker fee model. It is not clear
that any conclusions drawn in this sample will necessarily generalize to markets that are
organized differently. These concerns are somewhat mitigated by the facts that the sample
contains an economically large amount of trading activity, both in absolute terms and as a share
of volume in the sample firms, and the identified HFT firms account for a large share of the
observed volume. In addition, although I fail to find evidence of any detrimental effects of HFTs,
I can only observe their collective activity and my analysis focuses on their trading and effects
aggregated over a variety of market conditions. It is possible that individual HFTs follow
disruptive strategies that are hidden by this level of aggregation, or that HFTs collectively have
negative impacts in certain market conditions. Nevertheless, this paper should advance our
understanding of HFT trading behavior and market quality impacts.
The rest of this paper is organized as follows. Section 2 reviews the relevant literature. Section

3 describes the data. Section 4 analyzes HFT trading performance. Section 5 studies trading costs
and how they vary with HFT participation. Section 6 presents price efficiency tests. Section 7
concludes.
2. Literature review

In addition to the views of market participants and regulators, there are theoretical reasons to
suspect that HFTs may affect market quality. The major sources of trading frictions in the classic
market microstructure models are information asymmetry, inventory risk, and order processing
costs. HFTs are likely to differ from the intermediaries they have replaced in all of these
dimensions. As pointed out in Biais, Foucault, and Moinas (2011) and Jovanovic and Menkveld
(2012), the speed advantage of HFTs could allow them to react more quickly to public news than
other traders, which would reduce the adverse selection costs they face when providing liquidity
while making limit orders riskier for slower traders. Similarly, Stoll (2000) argues that speed
differentials play a role in informational frictions, and that increasing the speed parity among
traders could reduce spreads under certain conditions. Inventory costs may also play a greater
role than in the past. High-frequency traders generally seek to end the day flat. In models such as
Garman (1976) and Ho and Stoll (1981), inventory adjustment motives affect liquidity, and
recent evidence is supportive (Naik and Yadav, 2003; Panayides, 2007; Comerton-Ford,
Hendershott, Jones, Moulton, and Seasholes, 2010). Several studies have shown evidence of
market-maker inventory adjustment taking place relatively slowly,2 and if HFTs manage
inventory more aggressively, we might expect the effects on liquidity to increase. Order
processing costs should be reduced for HFTs because of their large trading volumes. Rebates for
adding liquidity are tiered by volume, and their fixed costs will be spread over more transactions.
While the classic microstructure literature has implications for the effects of HFTs, there has also
been a recent growth in HFT-specific theoretical literature. Jovanovic and Menkveld (2012)
develop a model where the information asymmetry effects can generate either beneficial or
1While non-displayed orders are allowed on the NASDAQ, market participants can only observe the displayed limit
order book.

2Hasbrouck and Sofianos (1993) [HS (1993) hereafter] find cases where inventory takes long periods
to revert to apparent target levels. In a more recent sample, Hendershott and Menkveld (2012) reported inventory
half-lives of 0.55–2.11 days.
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negative impacts, and derive the conditions where each outcome is in effect. Cvitanic and
Kirilenko (2010), Biais, Foucault, and Moinas (2011), and Jarrow and Protter (2012) present
theoretical models where HFTs can play disruptive roles. The mechanisms include order sniping
in Cvitanic and Kirilenko (2010), overinvestment, adverse selection, and the crowding out of
slower traders in Biais, Foucault, and Moinas (2011), and a type of herding behavior in Jarrow
and Protter (2012).

Despite the emerging theoretical literature and ongoing policy debates concerning HFTs, there
has been little empirical research on the behaviors and impacts of HFTs in equity markets until
very recently. The empirical studies include Kirilenko, Kyle, Samadi, and Tuzun (2011), Brogaard
(2012), Jovanovic and Menkveld (2012), BHR (2013), Hagströmer and Nordén (this issue),
Hasbrouck and Saar (this issue), and Menkveld (this issue). Of these, Kirilenko, Kyle, Samadi, and
Tuzun (2011) focus on a single extreme event (the 2010 Flash Crash3), and Jovanovic and
Menkveld (2012) and Menkveld (this issue) study a single HFT, leaving four papers that address
the collective behaviors and effects of HFTs across a range of market conditions. Brogaard (2012)
studies the same NASDAQ sample with HFT participation identified by the exchange used in my
paper, and finds that HFTs provide a large share of the liquidity in the market and dampen
volatility, and provides stylized facts on the determinants of their trading behavior. Also using the
same dataset, BHR (2013) find that HFTs are an important part of the price discovery process and
document stylized facts regarding their trading profits and the determinants of their trading
behavior. Hagströmer and Nordén (this issue) study a sample from NASDAQ-OMX Sweden that
allows them to track individual HFTs. They find that HFTs follow diverse strategies
and identify one group of HFTs that act as market-makers and another group that trades
opportunistically. They exploit exogenous changes in HFT activity driven by tick size changes to
show that the activity of market-maker HFTs mitigates short-term volatility. Hasbrouck and Saar
(this issue) also study recent NASDAQ data and use the intensity of inferred dynamic limit order
strategies, which they call strategic runs, to identify periods when HFTs are active in a stock. They
find that high-frequency trading “reduces quoted spreads and the total price impact of trades,
increases depth in the limit order book, and lowers short-term volatility.”

There is a related thread of empirical studies on algorithmic trading (AT). High-frequency
trading is generally considered a subset of AT, but is very different from other types of AT.
Hasbrouck and Saar (this issue) explain the distinction clearly. They divide AT into agency
algorithms and proprietary algorithms. Agency algorithms are “used by buy-side institutions (and
the brokers who serve them) to minimize the cost of executing trades in the process of
implementing changes in their investment portfolios.” These can be thought of as engaging in
activities such as splitting large orders or alternating between providing and taking liquidity, with
the goal of meeting a longer term trading need while minimizing its price impact. Proprietary
algorithms encompass the subset of algorithms employed by HFTs. In contrast to the typical
users of agency algorithms, HFTs trade their own capital, turnover positions rapidly, have the
technology and infrastructure to trade at very high speeds [2–3 milliseconds according to
Hasbrouck and Saar (this issue)], and are reluctant to hold inventory overnight. The AT literature
does not study high-frequency trading directly, but often touches on related issues or includes
HFT trades in AT samples. The empirical AT studies that address market quality issues include
Chaboud, Chiquoine, Hjalmarsson, and Vega (2011), Hendershott, Jones, and Menkveld (2011),
3The Flash Crash is the popular name for an event that occurred on May 6, 2010, where within a half-hour period, the
major U.S. equity indexes dropped more than 5% and quickly reversed most of the losses. Volatility in some ETFs and
individual stocks was even greater (Kirilenko, Kyle, Samadi, and Tuzun, 2011).
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and Hendershott and Riordan (forthcoming).4 Chaboud, Chiquoine, Hjalmarsson, and Vega
(2011) study AT in foreign exchange markets and find that AT trades contribute less to price
discovery than human trades in two of the three currencies in their sample, AT limit orders seem
to be placed strategically to face less adverse selection costs, AT reduces liquidity provision
before the Nonfarm Payroll (NFP) report and increases it afterwards, and there is some evidence
that AT lowers volatility. Hendershott, Jones, and Menkveld (2011) examine market quality
measures on the NYSE and find that AT improves liquidity for large capitalization stocks, makes
quotes more informative, and reduces the adverse selection costs of trades. They utilize an
infrastructure improvement in 2003 to establish causality. Hendershott and Riordan
(forthcoming) examine AT in the DAX stocks on the Deutsche Boerse’s Xetra platform. They
find that algorithmic traders are more likely to demand liquidity when it is cheap and supply
when it is expensive, and are faster to react to index returns than human traders. Chaboud
Chiquoine, Hjalmarsson, and Vega (2011) and Hendershott and Riordan (forthcoming) study
data that identifies algorithmic trader participation, while Hendershott, Jones, and Menkveld
(2011) use message traffic as a proxy for AT activity.

3. Data

3.1. Overview

The NASDAQ dataset consists of trades and quotes for a sample of 120 stocks. The stock
sample was chosen by Terrence Hendershott and Ryan Riordan. The sample is stratified by
market capitalization5 and is evenly split by NASDAQ and NYSE listing. Table 1 lists the means
of selected characteristics and trading volume statistics for the full sample and subsamples by
listing exchange and market capitalization.6 The NASDAQ’s share of trading is much higher for
the NASDAQ listed stocks than the NYSE listed stocks. This could suggest that the nature of
HFT activity on the NASDAQ may be different for the two groups of stocks, a possibility that
I allow for in the tests that follow. The sample period covers all of 2008 and 2009 and one week
in 2010.7 The trade sample consists of all trades executed on the exchange in continuous trading,
excluding crosses and NASDAQ TRF-reported trades.8 Trades are time stamped to the
millisecond and signed to indicate whether they were initiated by a buyer or seller. The trade
signs are high quality, and are based on records of fee and rebate payments used by the exchange.
NASDAQ Inside Quotes (BBOs) are provided for subsamples of the data. These subsamples
cover the first full trading week in each quarter, the week of September 15–19, 2008 (the week of
the Lehman Brothers collapse), and the week of February 22–26, 2010. The BBO data are time
stamped to the millisecond and do not have the synchronization problems common in alternate
sources. Quotes before 9:30 am, after 4:00 pm, with non-positive or missing ask prices, and with
crossed markets are filtered out. The only filter applied to the full trade sample is the removal of
trades before 9:30 am and after 4:00 pm. A subsample used for trading cost analysis also requires
a quote before and after each trade. Additional filters are applied for some analyses, and specifics
are provided in the relevant sections.
4There is also a somewhat large AT literature that studies trading algorithms and trading costs for users of algorithms.
5With 40 large, 40 medium, and 40 small stocks.
6A similar table with individual stock data is provided in the Internet Appendix.
7There is one day, October 10, 2008, missing from the dataset.
8The FINRA/NASDAQ TRF (Trade Reporting Facility) is a system that reports trades executed in dark trading venues

to the Consolidated Tape.



Table 1
Sample stock characteristics and trading volume summary statistics.

Avg. dollar trading volume

Group N Market cap
(billions)

Price NASDAQ CT NASDAQ Share

Full sample 120 17.828 39.59 69.365 201.259 31.5%
NYSE-listed stocks 60 18.347 29.96 32.295 154.916 17.6%
NASDAQ-listed stocks 60 17.309 49.23 106.436 247.602 45.5%
Large cap stocks 40 51.284 66.66 200.086 579.044 32.2%
Mid cap stocks 40 1.796 33.08 6.879 21.264 31.8%
Small cap stocks 40 0.403 19.04 1.130 3.468 30.6%

Sample was selected for NASDAQ by Terrence Hendershott and Ryan Riordan. Sample period is January 2008 –

December 2009 and February 22, 2010 – February 26, 2010. Listing venue, price, and market capitalization are from
CRSP as of February 26, 2010. Dollar trading volumes are from TAQ for trades between 9:30 am and 4:00 pm and are
first averaged over all days in the sample for each stock, then averaged across all stocks in each group.
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A unique feature of this dataset is that NASDAQ has manually identified 26 high-frequency
trading firms and flagged their activity. Specifically, trades contain a field with the following
codes: HH, HN, NH, or NN. H identifies a HFT and N identifies a non-HFT. The first term in the
pair classifies the liquidity taker, and the second term classifies the liquidity supplier. For
example, a trade labeled HN would mean an HFT took liquidity from a non-HFT.

The identities of the HFTs are not provided. The selection process was partly manual and
somewhat subjective. The principles are described in BHR (2013) as follows: “Firms are categorized
as HFT based on NASDAQ’s knowledge of their customers and analysis of firms’ trading such as
how often their net trading in a day crosses zero, their order duration, and their order to trade ratio.”
BHR (2013) and Hasbrouck and Saar (this issue) note that the selection process excludes certain
types of firms that engage in high-frequency trading, such as large integrated sell-side firms with
proprietary high-frequency trading desks, or smaller HFTs that route trades through direct access
brokers. BHR (2013) describe the sample as being composed of independent proprietary trading
firms. While the data only identify a subset of HFTs, these firms participate in a large share of the
trading volume in the sample (see Section 3.2). The misclassification of some HFTs as non-HFTs
biases many of the tests I conduct against finding significant results.

I also obtain supplemental data from CRSP and TAQ. I use CRSP data for the sample stock
descriptive statistics only. For several tests I employ midpoint returns, and I consider it preferable
to use an NBBO midpoint constructed from the TAQ CQ tape instead of the NASDAQ midpoint.
The NBBO includes price data from other market centers, and is available on dates when
NASDAQ Inside Quotes are not provided. In addition to the larger sample size available with
NBBO quotes, my main considerations in choosing a quote source for a particular application are
that my TAQ quotes are only time stamped to the second while NASDAQ quotes are time
stamped to the millisecond, and whether I am primarily interested in prices across all markets or
liquidity on the exchange where the sample trades occur. I also use TAQ to obtain SPY
midpoints to construct a proxy for the market return, and I use trade data from the CT to assess
NASDAQ’s volume shares in sample stocks.9
9SPY is the ticker symbol for an ETF that tracks the S&P 500.
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3.2. Descriptive statistics

Table 2 presents trade summary statistics. The second column reports values for the full
sample. The full sample covers 509 days and contains 550,118,372 trades for approximately 106
billion shares and a total dollar volume of $3.9 trillion. The daily average share volume in the
sample is 208 million shares and the dollar volume is $7.7 billion. There is substantial variation
in the daily trading activity. On the 10th percentile day, there is $4.4 billion traded, while on the
90th percentile day, $11.9 billion is traded. The trade size is of particular interest because there is
a common perception that trade sizes are much smaller than in the past. They are in fact small in
this sample: the average size is 192 shares, the median is 100 shares, and the 90th percentile is
400 shares. The third column reports values for the subsample where matching NASDAQ pre-
trade and post-trade quotes are available. This subsample contains 61,272,712 trades for 11.6
billion shares and $444 billion dollars. By comparing the two columns, we can informally assess
whether the quote subsample is reasonably representative. The days with quotes have somewhat
Table 2
Trade summary statistics.

Descriptive Statistics Full Sample Matched w/quotes

Days in sample 509 49
Number of trades 550,118,372 61,272,712
Total share volume (millions) 105,772 11,642
Total dollar volume (millions) 3,919,037 443,996
Trade size
Mean 192 190
Std Dev 449 447
10th %ile 50 58
Median 100 100
90th %ile 400 398

Num of trades/day
Mean 1,080,783 1,250,464
Std Dev 393,491 570,385
10th %ile 691,279 634,906
Median 1,009,167 1,091,299
90th %ile 1,575,009 2,263,314

Daily share volume (millions)
Mean 208 238
Std Dev 73 97
10th %ile 130 132
Median 197 209
90th %ile 298 396

Daily dollar volume (millions)
Mean 7,699 9,061
Std Dev 3,147 4,158
10th %ile 4,439 4,537
Median 6,892 7,740
90th %ile 11,912 15,076

Trade and Inside Quote (BBO) data provided by NASDAQ. Trade sample period is January 2008–December 2009 and
February 22, 2010–February 26, 2010. Trades are missing on October 10, 2008. Quote sample period is the first full week
of each quarter during 2008 and 2009, September 15, 2008–September 19, 2008 (the week of the Lehman Brothers
collapse), and February 22, 2010–February 26, 2010. Only trades between 9:30 am and 4:00 pm are used.
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more trading activity, but in general appear similar. The subsample covers roughly 10% of the
trading days in the full sample, and the aggregate trades, share volume, and dollar volume are
around 11% of the full sample values. The daily mean share volume and dollar volume in the
subsample are 14% and 18% higher, respectively, than the full sample means. The trade size
distributions are very close.

Next, I examine the extent of HFT activity as a share of total dollar trading volume. I construct
three measures of HFT participation that differ in how each trade is classified as a HFT or a non-
HFT trade. The first counts trades where an HFT participates on either side of a trade
(HFT_ALL), the second only uses trades where an HFT is the liquidity demander
(HFT_DEMAND), and the third only uses trades where a HFT is the liquidity supplier
(HFT_SUPPLY). Trades where HFTs are on both sides are counted in all three measures. The
denominator is all trading volume in the NASDAQ sample. The formulas for the three measures
are:

HFT_ALL¼ ðHH þ HN þ NHÞ=ðHH þ HN þ NH þ NNÞ ð1Þ

HFT_DEMAND¼ ðHH þ HNÞ=ðHH þ HN þ NH þ NNÞ ð2Þ

HFT_SUPPLY ¼ ðHH þ NHÞ=ðHH þ HN þ NH þ NNÞ; ð3Þ
where each right-hand side term is the dollar volume for the specified counterparty combination.

Table 3 presents summary statistics on the HFT participation variables. Panel A shows that HFTs
participate in 68.3% of all dollar trading volume, demand liquidity in 42.2%, and supply liquidity in
41.2% across the full sample. Panel B reports summary statistics for daily participation shares, with
trades pooled across all stocks on each sample day. The mean participation shares are similar and little
time variation is evident, with standard deviations ranging from 2.4% to 3.6%. These levels are
strikingly high and are of a similar order of magnitude to those reported by Brogaard (2012). Panel C
summarizes stock-day participation shares, with sample statistics equally-weighted across all stock-
days. This removes the extra weight implicitly given to stock-days with more trades in the previous
panels. Here we see much lower mean participation levels (48.3%, 32.5%, and 23.2% for HFT_ALL,
HFT_DEMAND, and HFT_SUPPLY, respectively), suggesting that HFTs participate more heavily in
stock-days with more trading activity. More variability is also evident, with standard deviations from
15.4% to 20.5%. A natural question is whether the variability in HFT participation across stock-days is
determined by temporary market conditions or by persistent stock characteristics. To gain some insight
into this issue, Panel D summarizes the mean daily participation shares for each stock. This analysis
shows that there is substantial variation in long-run mean HFT participation across stocks. For example,
the 90th percentile stock has a mean daily HFT_ALL share of 72.6%, while the 10th percentile stock
has a share of 25.1%. This is consistent with an analysis of HFT participation by stock-day in Brogaard
(2012), who finds that some persistent stock characteristics such as market capitalization and market-to-
book are determinants of HFT activity.

For some of the tests I conduct later, it is necessary to identify days with high HFT intensity.
In light of the observations above, a stock-specific measure that controls for the normal level of
HFT activity in that stock is desirable. For each of the three types of HFT participation, I construct
indicator variables that take a value of 1 for each stock-day where the dollar volume participation
share is in the highest tercile for that stock across all sample days and 0 otherwise. The choice of
terciles is somewhat arbitrary, but seems to be a reasonable tradeoff between sample size and
extremity. Panel E of Table 3 reports summary statistics on the differences between the mean HFT
dollar volume participation shares on days when the indicator variable is one (high participation



Table 3
HFT dollar volume participation shares.

HFT participation definition HFT_ALL HFT_DEMAND HFT_SUPPLY

Panel A: Full sample pooled
Participation share 68.3% 42.2% 41.2%

Panel B: daily pooling
N 509 509 509
Mean 68.5% 42.7% 41.1%
Std Dev 2.8% 3.6% 2.4%
10th %ile 65.2% 37.9% 38.2%
Median 68.3% 42.7% 41.1%
90th %ile 72.3% 47.8% 44.1%

Panel C: Stock-day pooling
N 61,014 61,014 61,014
Mean 48.3% 32.5% 23.2%
Std Dev 20.5% 15.4% 16.8%
10th %ile 19.9% 10.9% 5.5%
Median 49.2% 33.2% 17.9%
90th %ile 75.0% 52.6% 50.5%

Panel D: Stock pooling
N 120 120 120
Mean 48.3% 32.5% 23.2%
Std Dev 17.7% 11.9% 15.0%
10th %ile 25.1% 15.4% 10.2%
Median 46.4% 34.2% 15.7%
90th %ile 72.6% 47.1% 49.4%

Panel E: Within-stock variation
N 120 120 120
Mean 16.6% 16.1% 12.5%
Std Dev 5.4% 4.1% 3.6%
10th %ile 9.4% 10.9% 8.2%
Median 16.7% 16.1% 12.0%
90th %ile 23.4% 21.7% 16.9%

HFT participation shares are measured as dollar volume of sample trades with HFT participation divided by total dollar
volume of sample trades. Three versions of participation shares are calculated, differing in whether HFT participation is
defined as trades where an HFT participates in either side (HFT_ALL), the liquidity-demanding side (HFT_DEMAND), or
the liquidity-supplying side (HFT_SUPPLY). Trades where an HFT participates in both sides are used in all three
measures. Full Sample Pooled statistics are calculated using trading volume aggregated across the full sample. Daily
Pooling statistics use daily participation shares for volume aggregated across all stocks on each sample day, summarized
across days. Stock-day Pooling statistics use daily participation shares calculated for each stock, summarized across
stock-days. Stock Pooling statistics use daily participation shares calculated for each stock, summarized across stocks.
Within-Stock Variation statistics are calculated by first averaging volume for each stock across high HFT participation
days and normal HFT participation days separately, taking the differences between the two measures for each stock, then
summarizing across stocks. High HFT participation days are days when HFT participation is in its top tercile by stock,
other days are classified as Normal HFT participation days. Trade data provided by NASDAQ. Trade sample period is
January 2008–December 2009 and February 22, 2010–February 26, 2010. Trades are missing on October 10, 2008. Only
trades between 9:30 am and 4:00 pm are used.

A. Carrion / Journal of Financial Markets 16 (2013) 680–711688
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days) and other days (normal participation days). In the Internet Appendix, I verify that these
variables are well-behaved and suitable for use in the tests that follow.

4. Trading performance

It is important to understand the source of HFT profits for two main reasons. First, it gives
insight into their motives for trading and likely impacts on market quality. It is possible that
HFTs are simply earning the spread when providing liquidity, and demanding liquidity when
necessary to rebalance. If HFTs are instead profiting from market timing, then their trades would
be likely to make prices more efficient, yet the apparent liquidity they provide could be
overstated. Under that scenario, the liquidity provided by a HFT in the sample trades was only
available to counterparties trading against their price forecasts, and was not offered because they
perceived the spread to be an adequate incentive to provide liquidity. Second, this analysis
provides evidence on the intraday predictability of stock prices. Analogous to the search for signs
of longer horizon predictability in the asset manager performance literature, HFT performance
and behavior is a natural setting to search for signs of short-term predictability.

4.1. VWAP analysis

In this section, I investigate HFT market timing skills using Volume-Weighted Average Price
(VWAP) analysis.10 This method measures trading performance by comparing the average price
obtained on a set of trades of interest to a benchmark based on the average price of an alternate
set of trades. It is well-suited to this application because it does not require all of a market
participant’s trades to generate a valid measure, it does not rely on assumptions about when a
trade is reversed or a position is marked, and it does not use benchmarks that are designed from a
long -term investor perspective. I calculate the VWAP for various sets of trades as:

VWAP¼ ð1=VolTOTALÞ ∑
N

i ¼ 1
ðVoliÞðPiÞ; ð4Þ

where i indexes trades, N is the total number of trades in the set, Voli is the number of shares in
the ith trade, Pi is the price of the ith trade, and VolTOTAL is the total number of shares traded in
the set of trades. For the main analysis, I calculate the VWAPs of HFT buys, HFT sells, and all
sample trades for every stock-day in the sample.11 I refer to these measures as HFT Buy VWAP,
HFT Sell VWAP, and Market VWAP. I also provide a subsample analysis where I calculate
these measures separately for HFT liquidity-demanding and liquidity-providing trades and a
decomposition analysis where five-minute intervals are used in addition to full trading days.

HFT market timing performance can be assessed by comparing the three VWAP measures.
The Market VWAP is traditionally employed as a no-skill benchmark. Berkowitz, Logue, and
Noser (1988) refer to this measure as “the price a ‘naïve’ trader can expect to obtain.” If HFTs
possess market timing skills, then HFT Buy VWAP will be lower than Market VWAP, HFT Sell
VWAP will be higher than Market VWAP, and HFT Buy VWAP will be lower than HFT Sell
10VWAP analysis was introduced by Berkowitz, Logue, and Noser (1988) as a measure of broker and money manager
trading performance. My implementation is related to the floor trader performance measure from Manaster and Mann
(1996) and the traded spread from Stoll (2000).

11Sample trades include all continuous market trades executed on NASDAQ between 9:30 am and 4:00 pm, excluding
crosses. Trades between two HFTs (type HH trades) are excluded from HFT VWAP measures but included in
Market VWAP.
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VWAP. A possible objection to the characterization of performance based on these measures as
market timing skill is that it will capture liquidity provision as well as what we typically think of
as market timing. This is true for the initial analysis, but I address this concern in further tests,
first in this section by repeating the analysis for subsamples of liquidity-demanding and
supplying trades, and later in Section 5 where the spreads on HFT trades are examined.
The results of this analysis are presented in Table 4. All VWAP differences are signed so a positive

number indicates positive trading performance (i.e., Market VWAP—HFT Buy VWAP will be
positive if HFTs buy below the Market VWAP). The VWAP and difference calculations are performed
daily for each stock and summarized across stock-days, sample days, and stocks. Differences are
normalized by dividing by Market VWAP to facilitate aggregation across stocks. Panel A reports
summary statistics averaged across all stock-days. The normalized mean of HFT Sell VWAP — HFT
Buy VWAP (which I refer to as HFT Sell — Buy VWAP for brevity hereafter) is 6.5 bps. Positive
skewness is evident, as the median difference is only 2.3 bps. Buys and sells contribute about equally
(3.3 bps below Market VWAP and 3.2 bps above Market VWAP, respectively). This performance is
stronger for liquidity providing trades. For liquidity providing HFT trades, the HFT Sell - Buy VWAP
is 12.8 bps, while it is only 2.3 bps for liquidity-demanding trades.
In Panel B of Table 4, the VWAP differences for each stock are averaged over each sample

day, and the resulting daily values are then averaged to produce a time series of daily measures.
The standard deviation and skewness observed in Panel A decrease, which is not surprising
because I am essentially creating an equal-weighted portfolio of all the sample stocks every day.
The consistency of the HFT liquidity providing trade performance over time becomes apparent.
On the 10th percentile day, the mean HFT Sell—Buy VWAP across all stocks is 2.7 bps.
In Panel C, the differences are averaged over all sample days for each stock, and then
summarized across stocks. These results demonstrate another dimension of HFT liquidity
provision performance consistency. In the 10th percentile stock, the HFT Sell—Buy VWAP is
1.9 bps. All of the mean differences indicate positive performance and all are significantly
different from 0 at the 5% level or higher, with the exception of the HFT Sell—Market VWAP in
Panel C.
These results differ somewhat between NYSE and NASDAQ listed stocks. The most notable

difference is that the mean HFT Sell — Buy VWAPs for liquidity-demanding trades are much
higher for NYSE stocks and not significantly different from 0 for NASDAQ stocks in any of the
three weighting schemes. The other HFT Sell — Buy VWAP differences are qualitatively
similar, but point estimates indicate that HFT liquidity-supplying trades in NASDAQ stocks
outperform liquidity-supplying trades in NYSE stocks. These results are tabulated and discussed
in more detail in the Internet Appendix.

4.2. HFT trading profits

In the preceding analysis, the VWAP differences are presented as measures of observed HFT
trading performance relative to benchmarks. It is also possible to use the VWAP differences to
estimate HFT trading profits gross of rebates and fees.12 This requires an assumption regarding
the imbalance between observed buy volume and sell volume in a day. It is commonly assumed
that HFTs generally end the day flat or close to it, but their daily trading imbalances in the sample
often add up to substantial apparent positions at the end of the day. It is not clear to what extent
these apparent positions are offset by trades not in this dataset (i.e., not executed in continuous
12See BHR (2013) for a discussion of the relationship between trading profits, fees, expenses, and economic profits.



Table 4
HFT VWAP difference summary statistics.

HFT trade type All Demand Supply

VWAP difference mkt—buy sell—mkt sell—buy mkt—buy sell—mkt sell—buy mkt—buy sell—mkt sell—buy

Panel A: Stock-day weighting
N 60,692 60,716 60,585 60,260 60,360 59,966 60,084 60,108 59,524
Mean 0.033 0.032 0.065 0.011 0.010 0.023 0.064 0.065 0.128
Std Dev 0.484 0.431 0.560 0.539 0.516 0.659 0.639 0.611 0.813
T 3.26 14.42 22.30 3.57 3.57 6.96 14.43 12.68 25.87
10th %ile −0.177 −0.179 −0.244 −0.267 −0.268 −0.356 −0.298 −0.292 −0.317
Median 0.011 0.011 0.023 0.002 0.001 0.004 0.023 0.025 0.050
90th %ile 0.269 0.264 0.424 0.305 0.301 0.434 0.469 0.467 0.668

Panel B: Day weighting
N 509 509 509 509 509 509 509 509 509
Mean 0.033 0.032 0.065 0.011 0.010 0.023 0.064 0.065 0.128
Std Dev 0.056 0.050 0.066 0.071 0.063 0.075 0.100 0.115 0.111
T 13.24 14.38 22.27 3.56 3.55 6.93 14.45 12.71 25.94
10th %ile −0.017 −0.019 −0.004 −0.053 −0.056 −0.059 −0.018 −0.024 0.027
Median 0.028 0.027 0.058 0.008 0.005 0.020 0.049 0.055 0.108
90th %ile 0.087 0.090 0.147 0.077 0.078 0.109 0.159 0.157 0.257

Panel C: Stock weighting
N 120 120 120 120 120 120 120 120 120
Mean 0.034 0.032 0.066 0.011 0.009 0.021 0.066 0.067 0.135
Std Dev 0.046 0.033 0.069 0.041 0.047 0.070 0.077 0.062 0.137
T 8.06 10.47 10.50 3.02 1.98 3.35 9.45 11.76 10.80
10th %ile 0.000 0.001 0.003 −0.024 −0.024 −0.031 0.007 0.010 0.019
Median 0.023 0.020 0.052 0.006 0.006 0.013 0.051 0.056 0.111
90th %ile 0.077 0.078 0.139 0.055 0.058 0.095 0.138 0.131 0.258

Differences between VWAP on HFT trades of various categories and same-stock, same-day market VWAP, and differences between VWAP on HFT sells and buys. VWAP
differences are scaled by market VWAP and reported as percentages. VWAP differences are signed so that positive numbers indicate positive HFT performance. VWAP
differences are first calculated separately for each stock-day and then the stock-day values are summarized with different weightings. Panel A reports summary statistics weighted
equally over all stock-days, Panel B reports summary statistics equally weighted by day, and Panel C reports summary statistics equally weighted by stock. T-statistics test the null
that the mean is 0, and in Panel A use standard errors clustered by day. Trade data provided by NASDAQ. Trade sample period is January 2008–December 2009 and February 22,
2010–February 26, 2010. Trades are missing on October 10, 2008. Only trades between 9:30 am and 4:00 pm are used.
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trading on the NASDAQ), and to what extent they are actual overnight positions. For the purpose
of estimating HFT profits, I assume the imbalances are offset during the day in unobserved trades
(presumably in other trading venues or in the crosses) that are executed at the VWAP of similar
HFT trades in the data.13 Therefore, the estimates should be interpreted as profits to roundtrip
strategies where at least one leg is executed on the NASDAQ. I estimate HFT trading profits for
every stock-day as follows:

HFT Trading Profit¼ ðHFT Sell−Buy VWAPÞ �MaxðVolHFT ;Buy;VolHFT ;SellÞ; ð5Þ
where VolHFT,Buy is the total number of shares bought by HFTs and VolHFT,Sell is the total number
of shares sold by HFTs. I perform this calculation for all HFT trades (with non-HFT
counterparties) and for HFT liquidity-demanding and supplying trades separately.
I estimate that the sample HFTs earn trading profits of $2623.84 per stock-day. Considering

liquidity-demanding trades and liquidity-supplying trades separately, HFTs lose $691.54 when
demanding liquidity and earn $3292.61 when supplying liquidity.14 Note that the liquidity-
supplying and demanding profits do not add up to the total. This is not an error and is due to the
effect of liquidity-demanding trades that are offset by liquidity-supplying trades. These are
treated as imbalances when analyzing liquidity-demanding and supplying trades separately, but
the offsetting effects are recognized when all trades are considered together. These estimates
should be interpreted as hypothetical profits under the assumption that the imbalance-offsetting
trades were of the same type while ignoring any actual offsetting trades from the other type,
rather than a decomposition of the estimated overall profits into liquidity supply and demand
components. This approach allows for liquidity-demanding and supplying profit estimates that
reflect the price of liquidity in observed HFT trades.
Menkveld (this issue) and BHR (2013) also provide estimates of HFT profits. Menkveld finds

that the HFT he analyzes is profitable and earns the bulk of its gross profits from spreads on
liquidity-providing trades, but he studies a very different sample so the actual values are not
comparable. BHR (2013) studies the same sample and reports trading profits for market
capitalization subsamples which, when converted to full sample profits for comparison, would
translate to profits of $1990.10 per stock-day for all HFT trades, profits of $2636.35 for liquidity-
demanding trades, and losses of $646.26 for liquidity-supplying trades.15 BHR’s all-trade profit
estimates are somewhat lower than mine and the contrast between our liquidity-demanding and
supplying results is striking. I have identified two methodology choices that explain most of
these differences. First, they include trades between HFTs, while I exclude them. This choice is
sufficient to make HFT liquidity-demanding trades profitable. An inspection of the HFT Sell —
Buy VWAP differences on these trades confirms that when two HFTs trade with each other in
this sample, the liquidity-demanding trader tends to outperform the liquidity-supplying trader.
Second, on days with an HFT trading imbalance, BHR mark the imbalance at the closing quote
13For example, when estimating the profits to all HFT trades, if there is a buy imbalance in the data, the unobserved
offsetting sell trades are assumed to execute at the HFT Sell VWAP measured for all HFT sell trades on the same stock-
day. Similarly, when estimating the profits to liquidity-demanding HFT trades, a buy imbalance is assumed to be offset by
unobserved sell trades that are executed at the HFT Sell VWAP measured for liquidity-demanding HFT sells only. More
details are provided in the Internet Appendix.

14The mean loss on liquidity-demanding trades is not inconsistent with the positive mean HFT Sell—Buy VWAP of
2.3 bps for these trades reported in Table 4 (using stock-day weighting). This is a result of multiplying the HFT Sell—
Buy VWAP by HFT roundtrip trading volume in (5) to estimate the HFT dollar profits for each stock-day, and reflects
worse HFT performance in these trades on high volume stock-days.

15This conversion assumes a balanced panel, which seems approximately true. In their earlier 2012 working paper that
did report full sample profits, this approach came to within roughly 1%.
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midpoint, while I mark it at the VWAP of similar HFT trades as described above. The advantage
of my method is that it imputes prices on the unobserved HFT trades that adjust for the trading
skill and price of liquidity in similar observed HFT trades. Both choices are required to find
losses from HFT liquidity-providing trades. I provide a stepwise reconciliation of my results with
BHR’s and a more detailed description of the two methodologies in the Internet Appendix.16
4.3. Market timing decomposition analysis

At what horizon do HFTs have market timing ability? We might expect this ability to be
concentrated at the shortest horizons based on their investments in very low-latency technology
and various assertions in the media. This relates to questions about the nature of intraday return
predictability, whether HFTs are willing to risk their capital on expected price changes that take
longer to play out, and also on their potential effects on price formation. I investigate this issue
by decomposing the trading performance measures computed above into two components. First,
the HFT Sell — Buy VWAP differences summarized in Table 4 are decomposed into shorter
term and longer term components. I replace the price on each HFT trade with the Market VWAP
for the five-minute interval in which the trade occurred, and recalculate daily HFT Buy and Sell
VWAPS for each stock-day using these transformed prices. I then recalculate the HFT Sell —
Buy VWAP difference using the adjusted VWAPs, and refer to this as HFT intraday market
timing performance. This procedure removes the effects of HFT market timing within five-
minute intervals, and leaves only the effect of their choices of how much to buy or sell in a given
five-minute interval. I also measure the difference between the total HFT Sell— Buy VWAP and
the HFT intraday market timing performance on each stock-day, and call this the HFT short-term
timing performance. This can be interpreted as a measure of HFT’s ability to time the market
within five-minute intervals. If HFT market timing performance is only due to their short-term
timing ability, then their intraday market timing performance should be close to zero and the
entire HFT Sell — Buy VWAP difference should be allocated to the short-term timing measure,
and vice versa.

I demonstrate the decomposition approach with an example. Consider two HFTs (HFT1 and
HFT2) who trade the same stock over two five-minute intervals. The market VWAP is 100.00 in
the first interval and 102.00 in the second, but within each interval prices higher and lower than
the VWAP are available. HFT1 buys 100 shares in the first interval for $99.00, and sells them in
the same interval for $101.00, then buys 100 shares for $101.00 in the second interval, and sells
them in the same interval for $103.00. HFT2 buys 200 shares in the first interval for $100.00, and
sells them in the second interval for $102.00. Both traders would have HFT Buy VWAPs of
$100.00, HFT Sell VWAPs of $102.00, and HFT Sell - Buy VWAP differences of $2.00.
However, HFT1’s performance was driven by trades at briefly available prices and HFT2’s
performance was driven by buying when prices were low for a sustained period and selling when
prices were higher for a sustained period. Replacing the trade prices with the market VWAPs for
the intervals in which they traded, HFT intraday market timing performances of $0.00 are
calculated for HFT1 and $2.00 for HFT2. Similarly, the HFT short-term timing performances are
16I also provide a separate reconciliation between profit estimates for the large cap subsample obtained from my
methodology and those reported for the same subsample by BHR. The main implications of my analysis hold in the large
cap subsample. The reconciliation is much closer than for the full sample and confirms that the methodology choices
identified above explain the substantive differences. These reconciliations also show the robustness of my reported
estimates.
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$2.00 for HFT1 and $0.00 for HFT2. When I apply this decomposition to the data, if the sample
HFTs trade more like HFT1, then more of the HFT Sell - Buy VWAP difference will be attributed to
HFT short-term timing performance. If they trade more like HFT2, then more of the HFT Sell —
Buy VWAP difference will be attributed to HFT intraday market timing performance.
This decomposition is similar in spirit to the procedure introduced by Hasbrouck and Sofianos

(1993) [HS (1993) hereafter] and applied by Menkveld (this issue) and many others, but has
important differences. HS (1993) decompose profits into a component attributable to the bid-ask
spread and a positioning component.17 ,18 This is implemented by replacing the trade prices with pre-
trade midpoints and recalculating the total profits. It may superficially appear that the spread
component in their approach would be entirely allocated to my short-term timing measure and the
positioning component would be very similar to my intraday timing measure, but that is not the case.
This would be true if the pre-trade midpoint on every HFT trade was equal to the market VWAP in
that five-minute interval. Otherwise, part of the spread component on trades not reversed within same
interval could be picked up in the intraday timing measure. The amount of the spread component
allocated to the intraday timing measure will depend on multiple factors and is not possible to
quantify precisely in this sample due to the incomplete quote coverage, but the liquidity-demanding
and supplying trade subsamples can be used to estimate lower and upper bounds on this effect. For
liquidity-demanding trades, the intraday timing measure will capture a HS (1993) positioning-like
component less some part of the spread component; for liquidity-supplying trades, it will pick up this
positioning-like component plus some part of the spread component.19 The HS (1993) method is not
well-suited to this dataset because there is only quote data for a fraction of the sample period and the
incomplete set of the sample HFTs’ trades precludes reliable inventory calculations.
The results of the decomposition analysis are presented in Table 5. Panel A reports results for

stock-day weighting. For each HFT trade type group, the first column reports summary statistics
on HFT intraday market timing performance. For all trades, 5.0 bps of the 6.5 bps overall HFT
Sell - Buy VWAP is attributable to intraday market timing performance. For liquidity-demanding
trades, their intraday market timing performance of 2.8 bps is actually higher than their 2.3 bps
HFT Sell - Buy VWAP. For liquidity-supplying trades, 8.1 bps of their 12.8 bps HFT Sell - Buy
VWAP is attributable to intraday market timing performance. All of the intraday market timing
performance estimates are highly statistically significant. HFT intraday market timing
performance also seems to inherit much of the positive skewness from the overall HFT Sell -
Buy VWAP difference. For each HFT trade type group, the second column reports summary
statistics on HFT short-term timing performance. HFT short-term timing performance for all
trades and liquidity-supplying trades is positive, while it is negative for liquidity-demanding
trades. All of the short-term timing performance estimates are highly statistically significant.
HFT short-term timing performance is also positively skewed, but less so than intraday
market timing performance. Panels B and C present the decomposition summarized with day and
17There are two other differences to note. HS (1993) work in dollar profits, while my HFT Sell — Buy VWAP
measures and components are essentially dollar profits per hundred dollars of HFT roundtrip trading volume. Also, their
procedure assumes that the sample contains all of a market participant’s trades and handles imbalances as inventories
carried across days, while I adjust for incomplete trade data as described above.

18HS (1993) refer to the positioning component as “gross quote midpoint trading profits,” while Menkveld (this issue)
and others use the term “positioning profit.” The positioning component is further decomposed by time horizon using
spectral analysis.

19Even after converting to dollar amounts and ignoring imbalances, this would not be exactly equal to the HS (1993)
positioning component because the positioning performance within the 5-minute intervals would be allocated to my short-
term timing measure.



Table 5
HFT VWAP difference decomposition.

HFT Trade Type All Demand Supply

Performance
Measure

Intraday market
timing

performance

Short-term
timing

performance

Intraday market
timing

performance

Short-term
timing

performance

Intraday market
timing

performance

Short-term
timing

performance

Panel A: Stock-day weighting
Mean 0.050 0.015 0.028 −0.005 0.081 0.046
Std Dev 0.558 0.207 0.638 0.146 0.783 0.235
T 17.55 16.94 8.81 −7.38 18.12 33.19
10th %ile −0.251 −0.031 −0.338 −0.059 −0.358 −0.027
Median 0.016 0.007 0.006 −0.002 0.026 0.020
90th %ile 0.396 0.062 0.431 0.047 0.587 0.136

Panel B: Day weighting
Mean 0.050 0.015 0.028 −0.005 0.081 0.046
Std Dev 0.064 0.020 0.072 0.015 0.101 0.033
T 17.5 16.87 8.77 −7.38 18.15 31.87
10th %ile −0.014 −0.001 −0.049 −0.020 −0.010 0.020
Median 0.045 0.012 0.027 −0.005 0.065 0.039
90th %ile 0.125 0.030 0.107 0.009 0.182 0.082

Panel C: Stock weighting
Mean 0.050 0.016 0.027 −0.006 0.086 0.049
Std Dev 0.060 0.028 0.063 0.018 0.091 0.057
T 9.25 6.32 4.65 −3.41 10.35 9.44
10th %ile −0.006 0.002 −0.024 −0.016 0.005 0.013
Median 0.040 0.010 0.015 −0.002 0.066 0.032
90th %ile 0.116 0.029 0.099 0.008 0.181 0.108

Decomposition of the differences between VWAP on HFT same-stock, same-day sell and buy trades of various categories
into an intraday market timing performance component and a short-term timing component. VWAP differences and
components are scaled by market VWAP and reported as percentages. VWAP differences and components are signed so
that positive numbers indicate positive HFT performance. The intraday market timing performance is calculated by first
replacing the price on each HFT trade with the market VWAP for the same five-minute interval, computing VWAPS for
HFT sells and buys using the modified prices for every stock-day, and then taking the difference between the adjusted sell
and buy VWAPs. Timing performance is the HFT Sell-Buy VWAP difference calculated using actual trade prices less the
intraday market timing performance. T-statistics test the null that the mean is 0, and in Panel A use standard errors clustered
by day. Trade data is provided by NASDAQ. Trade sample period is January 2008–December 2009 and February 22,
2010–February 26, 2010. Trades are missing on October 10, 2008. Only trades between 9:30 am and 4:00 pm are used.
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stock-day weighting, and show very similar results.20,21 It is noteworthy that HFT short-term
timing performance on liquidity-demanding trades is negative. This suggests that, without HFTs’
intraday market timing skills, which are negatively affected by spread effects on these trades but
20I also perform this analysis in NYSE and NASDAQ subsamples. The results are qualitatively similar. The signs and
significance are unchanged. The point estimates indicate that more of the HFT intraday market timing performance comes
from liquidity-demanding trades for NASDAQ stocks and more from liquidity-supplying trades for NYSE stocks.

21I also conduct an analysis where I rank all 5-minute intervals within each stock-day into 13 groups by market VWAP
and examine how HFT activity differs from low-to-high price intervals. The main results are (1) HFTs buy more in the
low price periods and sell more in the high price periods, consistent with the Table 5 analysis, and (2) this behavior is
relatively continuous across price levels rather than concentrated at the extremes.
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still positive and significant, their short-term timing ability in these trades is not sufficient to
overcome the bid-ask spread. It is also useful to compare this to a similar analysis of the single
HFT in Menkveld (this issue). Menkveld finds that the HFT is only profitable from spreads and
in positions that last five seconds or less and consistently loses on positions held longer than a
minute. If this was true in my sample, we would expect to see negative intraday timing
performance measures for liquidity-demanding trades. The difference is possibly a reflection of
differences in market structure or the Hagströmer and Nordén (this issue) finding of
heterogeneity in HFT strategies. It is also interesting to note that Menkveld is able to examine
the HFT’s positions across markets and finds that net long or short positions last “seconds,
minutes, and even hours,” which is consistent with the possibility of an HFT earning significant
intraday market timing profits.
Overall, these results are striking. HFTs would retain most of their market timing ability if they

transacted at the market VWAPs for the five-minute intervals in which their trades occur. HFT
intraday market timing performance is greater than short-term timing performance for all HFT
trade type groups. This even holds for their liquidity-demanding trades, where the intraday
market timing performance is expected to be negatively affected by spread effects.
These results suggest that HFTs possess intraday market timing skills, buying when prices are

temporarily low and selling when prices are temporarily high. This is consistent with the
existence of economically significant predictability in intraday prices. These timing skills are not
driven by very short-term signals and are not a result of trading at fleeting prices. Finally,
HFT liquidity-providing trades outperform their liquidity-demanding trades. This raises the
question of why they engage in so many liquidity-demanding trades. As discussed in Section 3.2,
half or more of HFT dollar trading volume (depending on the measurement approach) is
liquidity-demanding. It is likely that both types of trades are used together in integrated trading
strategies. It is also possible that some of the liquidity-demanding trades are motivated by
inventory rebalancing or other risk considerations instead of profits, and that some HFT liquidity-
demanding trades are motivated by more time-sensitive information than their liquidity-
supplying trades. Note that the results in this section are obtained from the aggregate activity of
the sample HFTs, and may mask heterogeneity in the trading strategies and profitability across
individual HFTs.
5. Trading costs

In this section I compare the trading costs between trades with HFT participation and those
without. The primary metrics I use are effective spreads, permanent price impacts, and realized
spreads. All spreads are measured as percentages of the midpoint price prior to the trade, and I
report half spreads to reflect one-way rather than roundtrip costs. For this analysis, I use the
subsample of trades where both pre- and post-trade quotes are available.
Effective spreads measure the difference between a trade’s execution price and the pre-trade

midpoint. Effective spreads compensate liquidity providers for adverse selection costs when
trading with informed traders [as in Glosten and Milgrom (1985)] and are expected to contain an
additional component that covers inventory risk, order processing costs, and market-maker rents.
This second component is termed “real friction” by Stoll (2000). An established empirical
decomposition method separates the effective spreads into the permanent price impact (adverse
selection component) and realized spread (real friction). See Huang and Stoll (1996) and
Bessembinder and Kaufman (1997a,b) for a discussion of this methodology and examples of its
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implementation. The following formulas are used on every trade where quotes are available:

Effective Spread¼ 100QðP–M0Þ=M0 ð6Þ

Permanent Price Impact¼ 100QðMT–M0Þ=M0 ð7Þ

Realized Spread¼ 100QðP–MT Þ=M0 ¼ Effective Spread−Permanent Price Impact; ð8Þ
where Q is a trade sign indicator variable equal to 1 for buys and -1 for sells, P is the trade price,
M0 is the pre-trade quote midpoint, and MT is midpoint T minutes after the trade. Reported
decompositions are computed with T set to 1 minute, and untabulated robustness tests use
15 seconds, 30 seconds, 5 minute, and 30 minute. The last midpoint of the regular trading hours
is used when trades are within T minutes of the close. Aside from the traditional interpretations of
this decomposition, there are additional reasons it is of particular interest when combined with
the HFT identification. If HFTs systematically profit from compensation in the spread, we should
observe high realized spreads on their liquidity-providing trades. Otherwise, if HFTs profit from
these trades it must be through some other mechanism, such as rebates or superior exit timing (i.
e., beating the 1-minute benchmark used in the decomposition). If the realized spreads on these
trades are much higher than on those where others provide liquidity, this suggests that HFTs have
skill in choosing when to offer liquidity to the market. When taking liquidity, if HFTs are trading
on information we should observe high permanent price impacts, while if they are simply re-
balancing we should not.

Means and medians of the spread and permanent price impacts are reported in Table 6. These
are tabulated for the full sample and for all counterparty type combinations in the data. For the
full sample, the mean effective spreads are 2.7 bps, the mean permanent price impacts are
3.9 bps, and the realized spreads are −0.9 bps. These trading cost measures are strikingly low
compared to historical estimates. For example, Bessembinder (2003) finds mean effective
spreads of 28.9 bps and realized spreads of 17.2 bps in his post-decimalization NASDAQ
sample.22 Many other studies have noted reductions in trading costs over time (e.g., Chordia,
Roll, and Subrahmanyam, 2008, 2011; Angel, Harris, and Spatt, 2011), so the low costs in this
sample are not entirely unexpected. It is surprising, however, that mean realized spreads are
negative for the full sample and all counterparty combinations, and medians are negative in the
full sample and negative or zero for all counterparty categories.23 This means that effective
spreads do not fully compensate the liquidity provider for adverse selection costs. It does not
necessarily mean that liquidity providers lose money to informed traders on average, because the
absolute values are small and at least partially offset by liquidity rebates. It is also possible that
some liquidity providers are able to beat the 1-minute post-trade benchmarks built into these
measures, which is suggested by the market timing analysis in Section 4.24 Nevertheless, it does
mean that the compensation for liquidity provision is very low based on these widely-used
measures. I offer two possible explanations. First, it is possible that increased competition
between liquidity providers has driven compensation for liquidity provision down to a level close
to the liquidity rebate. Second, it is possible that order submission strategies have evolved in
such a way that a large proportion of the trades are between traders seeking liquidity with varying
degrees of patience or price sensitivity (Hasbrouck and Saar, 2009), rather than trades between
22Originally reported as roundtrip spreads, converted to half spreads here to facilitate comparison with my results.
23This observation holds for realized spreads based on 15-second, 30-second, 5-minute, and 30-minute decompositions.
24Using the realized spread to estimate liquidity supplier profits also ignores that if a roundtrip can be completed with

two liquidity-providing trades, then the effective spread will be earned twice while the price impact is paid only once.



Table 6
Mean and median spread and permanent price impact summary.

1-minute decomposition

Category N Effective spread Perm price impact Realized spread

Panel A: Mean spreads and permanent price impacts

All 61,272,712 0.027 0.036 −0.009
HH 11,631,186 0.023 0.035 −0.012
HN 14,837,559 0.021 0.034 −0.013
NH 19,581,587 0.028 0.032 −0.004
NN 15,222,380 0.035 0.042 −0.007

Panel B: Median spreads and permanent price impacts
All 61,272,712 0.022 0.025 −0.002
HH 11,631,186 0.023 0.029 −0.016
HN 14,837,559 0.018 0.024 −0.010
NH 19,581,587 0.024 0.023 0.000
NN 15,222,380 0.023 0.024 0.000

All spreads and permanent price impacts are measured as a percent of the pre-trade midpoint. Spreads are reported as 1-
way or half-spreads. Trades signs are provided by NASDAQ based on payments to liquidity providers. Uses trade
subsample where both a pre-trade and post-trade midpoint are available. The first letter in each trade category label refers
to the liquidity taker and the second refers to the liquidity provider. H signifies an HFT; N signifies a non-HFT.
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an impatient liquidity demander and a liquidity provider largely motivated by the compensation
in the spread.
To compare trading costs in trades with HFT participation to those without, I regress these

measures of trading costs on indicator variables that capture whether a HFT participated in a
trade. I utilize stock-day-half-hour fixed effects to control for stock characteristics and market
conditions within half-hour intervals, and include control variables for various trade
characteristics. Variations of the following specification are used:

SPREADitn ¼ αit þ β1HFT þ β2ðHFT �MEDIUMÞ þ β3ðHFT � LARGEÞ
þβ4ðHFT � BUYÞ þ β5MEDIUM þ β6LARGE þ β7BUY þ ε; ð9Þ

where i indexes stocks, t indexes day-half-hour intervals, and n indexes trades. SPREAD is an
effective spread, permanent price impact or realized spread. HFT is an indicator variable equal to
1 if a trade had HFT participation and 0 otherwise. Different versions of the model define HFT
participation by trade side (liquidity-demanding or liquidity-supplying). The interaction terms
allow the effects of HFT participation to vary with trade characteristics. MEDIUM and LARGE
are trade size indicator variables. MEDIUM trades are defined as at least 500 but less than 1000
shares, and LARGE trades are 1000 shares or more. BUY indicates that the buyer took liquidity
in the trade. The coefficient on HFT is of primary interest and can be interpreted as the difference
in the spreads or price impacts between trades with HFT participation (of the specified type) and
those without after controlling for the other explanatory variables. In specifications including all
interaction terms, the HFT indicator variable captures the trading cost differences for trades of
less than 500 shares or sell trades within each stock-day-half-hour, and the coefficients on the
HFT indicator variables interacted with characteristics are additional differences on HFT trades
above that for small HFT trades or sells. I estimate the regressions using the fixed-effects
estimator and cluster the standard errors within day-half-hour intervals following Arellano (1987)
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and Gormley and Matsa (2013).25 The fixed-effects estimator (or within-group transformation)
implements the fixed effects by demeaning the dependent and independent variables within each
group and estimates the model on the transformed data with pooled OLS. It is possible to
compute clustered standard errors directly from (9) on the untransformed data in principle, but
the fixed-effects estimator is less computationally intensive when many indicator variables are
required.

Table 7 reports the results of the regressions. The HFT participation indicator is defined based
on the liquidity-demanding side of the trade in Panel A and the liquidity-supplying side of the
trade in Panel B. The dependent variable is the effective spread in Models 1–4, the permanent
price impact in Models 5–8, and the realized spread in Models 9–12. The first pair of models in
each group (Models 1–2, 5–6, 9–10) omit the interaction terms, constraining the effect of HFT
participation to be constant across trades, while the second pair (Models 3–4, 7–8, 11–12) allows
the effect of HFT participation to vary with trade size or trade direction. The first model in each
group includes only the HFT participation indicator and stock-day-half-hour fixed effects, while
the other models include trade characteristic controls. The coefficient estimates on Models 1–2 in
Panels A and B show that effective spreads are 0.7 bps tighter on trades where an HFT demands
liquidity and 0.3 bps wider on trades where an HFT supplies liquidity. The controls add very
little explanatory power beyond the fixed effects. These results suggest that HFTs provide
liquidity when it is scarce and consume liquidity when it is plentiful. The interaction terms show
that this effect is smaller for medium and large trades, and is absent for large liquidity-supplying
trades. All estimates on the HFT indicator variables are significant at the 1% level for the
effective spread regressions. Models 5–8 in Panels A and B show the results for permanent price
impacts, which are generally less statistically significant and arguably economically insignificant.
The exception is that there is evidence suggesting that HFTs face lower adverse selection costs
than non-HFTs when supplying liquidity in larger trades. The coefficient estimates on Models
9–10 in Panels A and B show that realized spreads are 0.8 bps tighter than on similar trades when
HFTs demand liquidity and 0.4 bps wider for trades when HFTs supply liquidity. This confirms
that the results observed in the effective spread regressions are not overwhelmed by adverse
selection effects, and appear to be strengthened by HFTs’ informational advantage when
demanding liquidity and their ability to avoid supplying liquidity to informed traders. The size
interaction regressions show the same pattern observed for effective spreads when HFTs demand
liquidity, and show that their ability to avoid adverse selection on larger trades results in higher
realized spreads for trades above 500 shares when supplying liquidity. There is no significant
asymmetry in this effect for buys and sells. All estimates on the HFT indicator variables are
significant at the 1% level in the constrained realized spread regressions for both HFT demand
and supply. In the interaction regressions, the HFT demand indicator variable is significant at the
1% level for small trades and sells, is marginally significant when interacted with MEDIUM, and
is insignificant elsewhere. The HFT supply indicator variable is significant at the 1% level for
small trades and sells, when interacted with MEDIUM and LARGE, and insignificant when
interacted with BUY.26
25Arellano (1987) introduces a method for clustering standard errors by the fixed-effects groups that utilizes the fixed-
effects estimator and a cluster adaptation of the White (1980) estimator. Gormley and Matsa (2013) point out the correct
degrees of freedom adjustment when extending this approach to handle fixed-effects nested within clusters.

26I also perform this analysis in NYSE and NASDAQ subsamples. The results are qualitatively similar for effective
spreads and realized spreads, but differ for permanent price impacts. The permanent price impact results are provided in
the Internet Appendix.



Table 7
Regression estimates of spreads and permanent price impacts on HFT participation variables and controls.

Panel A: HFT demand participation

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Dependent variable Effective spread Permanent price impact Realized spread

HFT −0.007 −0.007 −0.007 −0.007 0.001 0.001 0.001 0.001 −0.008 −0.008 −0.008 −0.008
(o0.001) (o0.001) (o0.001) (o0.001) (0.066) (0.037) (0.028) (0.045) (o0.001) (o0.001) (o0.001) (o0.001)

HFT�MEDIUM 0.001 0.000 0.001
(o0.001) (0.497) (0.095)

HFT�LARGE 0.001 0.000 0.001
(o0.001) (0.614) (0.370)

HFT�BUY 0.0005 −0.001 0.001
(o0.001) (0.525) (0.293)

MEDIUM 0.0005 0.0002 0.0005 0.005 0.005 0.005 −0.004 −0.005 −0.004
(o0.001) (0.069) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001)

LARGE 0.001 0.001 0.001 0.008 0.008 0.008 −0.007 −0.008 −0.007
(o0.001) (0.026) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001)

BUY −0.0003 −0.001 0.003 0.003 −0.003 −0.004
(o0.001) (o0.001) (0.501) (0.466) (0.452) (0.394)

R2 27.60% 27.60% 27.60% 27.60% 2.44% 2.44% 2.44% 2.44% 1.37% 1.38% 1.38% 1.38%

Panel B: HFT supply participation

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dependent variable Effective spread Permanent price impact Realized spread

HFT 0.003 0.003 0.004 0.003 −0.001 −0.001 0.000 −0.002 0.004 0.004 0.004 0.005
(o0.001) (o0.001) (o0.001) (o0.001) (0.011) (0.041) (0.297) (0.014) (o0.001) (o0.001) (o0.001) (o0.001)
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HFT�MEDIUM −0.002 −0.004 0.002
(o0.001) (o0.001) (o0.001)

HFT�LARGE −0.004 −0.008 0.004
(o0.001) (o0.001) (o0.001)

HFT�BUY 0.0004 0.002 −0.002
(o0.001) (0.065) (0.120)

MEDIUM 0.001 0.002 0.001 0.004 0.006 0.004 −0.003 −0.004 −0.003
(o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001)

LARGE 0.003 0.004 0.003 0.008 0.011 0.008 −0.006 −0.007 −0.006
(o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001) (o0.001)

BUY −0.0004 −0.001 0.003 0.002 −0.003 −0.002
(o0.001) (o0.001) (0.499) (0.678) (0.445) (0.570)

R2 27.41% 27.41% 27.41% 27.41% 2.44% 2.44% 2.44% 2.44% 1.36% 1.37% 1.36% 1.37%

The regression model is:

SPREADitn ¼ αit þ β1HFT þ β2ðHFT �MEDIUMÞ þ β3ðHFT � LARGEÞ þ β4ðHFT � BUYÞ þ β5MEDIUM þ β6LARGE þ β7BUY þ ε;

where i indexes stocks, t indexes day-half hours, and n indexes trades. SPREAD is an effective spread, permanent price impact, or realized spread. The regression is estimated with
stock-day-half hour fixed-effects. HFT is an indicator variable that takes a value of 1 if an HFT participated in the trade and 0 otherwise. In Panel A HFT is defined using the
liquidity-demanding side of the trade; in Panel B HFT is defined using the liquidity-supplying side of the trade. MEDIUM and LARGE are indicator variables that capture trade
size. MEDIUM indicates a trade size of (500 shares, 1,000 shares), and LARGE indicates a trade size≥1,000 shares. BUY is a dummy indicating that the trade was buyer-initiated.
P-values are reported in parentheses and are based on standard errors clustered within half-hour intervals. All regressions use 61,272,712 trade observations.
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Fig. 1. Time and cross-sectional variation in impact of HFT participation on effective spreads. Panel A: HFT_DEMAND
vs. Time, Panel B: HFT_DEMAND vs. Stock Ranking, Panel C: HFT_SUPPLY vs. Time and Panel D: HFT_SUPPLY
vs. Stock Ranking. The graphs show coefficients from effective spreads regressed on HFT participation indicator
variables and controls estimated one day at a time or one stock at a time. The regression model is:

Ef f ective Spreaditn ¼ αit þ β �HFT þ controls;

where i indexes stocks, t indexes day-half hours, n indexes trades, and HFT is an indicator variable that takes a value of 1
when an HFT participates in a trade. HFT is alternately set to HFT_DEMAND or HFT_SUPPLY, which use participation
on the liquidity-demanding or supplying side of the trade respectively. In Panels A and B, HFT participation is defined
using the liquidity-demanding side of the trade. In Panels C and D, HFT participation is defined using the liquidity-
providing side of the trade. When regression is estimated one stock at a time, stocks are sorted in order of estimated
loading on HFT.
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Fig. 1 shows the time series and cross-sectional variation in the effect of HFT participation on
effective spreads. The plots show the coefficients on the HFT indicator variable in Eq. (9),
without interaction terms and using all controls, estimated one day at a time or one stock at a
time. From Panels A and C, we see the coefficients do vary over time. For example, in Panel A
we see the lowest value for HFT_DEMAND is −1.5 bps, and the highest is �0.2 bps. Panels B
and D show how the coefficients vary by stock, with stocks sorted by their coefficient estimates.
These show relatively little variation except in the tails, and by inspection the tails tend to hold
small stocks.27
27The exception is that the right tail in Panel B of Fig. 1 (higher effective spreads when HFT demand liquidity) is
composed primarily of large caps. The one visually obvious outlier is a small cap, however.
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It is also of interest to compare the permanent price impact regression estimates with the price
discovery analysis in BHR (2013). Understanding the adverse selection in HFT trades is
particularly important because one of the detrimental impacts of HFTs predicted by the
theoretical literature is that they impose high adverse selection costs on non-HFTs when
demanding liquidity, and one of the predicted benefits of HFTs is that they may quote tighter
spreads based on their ability to avoid being adversely selected by slower traders [see Biais,
Foucault, and Moinas (2011) and Jovanovic and Menkveld (2012) discussed in Section 2]. BHR
(2013) find that when demanding liquidity, HFT trades bring information into the market and
impose adverse selection on liquidity suppliers more than non-HFTs, and when supplying
liquidity themselves are adversely selected, but less so than non-HFTs. The regression models
employed in this paper provide an alternate perspective on these questions. These models test
whether the permanent price impacts of trades with HFT participation are significantly different
from permanent price impacts of other trades, after controlling for the other factors described
above. In comparison, BHR uses unexpected HFT and non-HFT trading only, aggregates trading
activity at the one-second level, and measures price impact with changes in an efficient price
obtained from a state-space model rather than raw quote midpoints. The results in Table 7 from
the constrained models show that trades where HFTs demand liquidity do have 0.1 bps higher
permanent price impacts than similar trades where they do not, and trades where HFTs supply
liquidity have 0.1 bps lower permanent price impacts than similar trades. However, these
magnitudes are economically small and the statistical significance is relatively weak considering
the number of observations. These results also differ across trade types and stock subsamples.
From Model 7 in Panel B we see that the permanent price impacts on small trades where HFTs
supply liquidity are not significantly different from those on similar trades where non-HFTs
supply liquidity, and small trades are most prevalent in this market. In the Internet Appendix we
see that the result of HFTs imposing higher adverse selection costs when demanding liquidity
does not hold for the 60 NYSE-listed stocks (in the constrained models, or for small trades, sell
trades, and buy trades in the interaction models). On balance, the evidence on the theoretical
predictions regarding adverse selection in HFT trades seems mixed. The results are
methodology-dependent and weak or absent for small trades and for a large subsample of stocks.

Overall, the results from the regressions confirm the initial observations from the summary
statistics. HFT participation explains statistically significant differences in trading cost measures,
and HFTs execute their trades at better prices than non-HFTs and have some ability to avoid
adverse selection costs on larger trades when supplying liquidity. These results must be
interpreted with some caution, however. I cannot assign causality to HFT participation for the
differences in trading costs reported. First, it is possible that causality runs in the opposite
direction. It is likely that HFTs condition their trading behavior on expected trading costs.
Second, even if HFTs do not participate in a given trade, their presence in the market could still
affect the cost of that trade through competition or adverse selection.
6. Market efficiency

Pricing efficiency is widely considered to be an important dimension of market quality. Fama
(1970) describes an efficient market as one where “security prices at any time ‘fully reflect’ all
available information.” Chordia, Roll, and Subrahmanyam (2008) [CRS (2008) hereafter] note
that the empirical literature has shown that intraday inefficiencies can exist in markets that are
efficient at longer horizons, because it takes investors time to process and react to information.
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They further state that “the determinants of this short term predictability deserve a thorough
investigation by finance scholars.”
It is an open question whether high-frequency trading makes prices more efficient. Theory provides

little direct guidance. There is no consensus on how to describe HFT behavior, so it is not clear whether
they should be modeled as discretionary market makers, arbitrageurs, predators, or some combination.
The HFT-specific models such as Jarrow and Protter (2012) and Jovanovic and Menkveld (2012)
describe a variety of mechanisms that could make prices more or less efficient. Empirically, BHR
(2013) find that HFTs are an important part of price discovery process and that their abnormal trading is
in the direction of removing pricing errors, but this is not equivalent to showing that their activity results
in more efficient prices and they do not perform direct efficiency tests on the time series of prices. Also,
Brogaard (2012), Hagströmer and Nordén (this issue), and Hasbrouck and Saar (this issue) find some
evidence that HFT reduces volatility, which is often informally considered an inverse measure of
efficiency. However, total volatility is composed of fundamental volatility and excess volatility. While
reducing excess volatility makes prices more efficient, these studies only deal with total volatility.
Finally, Hasbrouck and Saar (this issue) find that HFT increases liquidity and CRS (2008) find that
liquidity is associated with greater market efficiency.
In this section, I will further investigate this question by comparing the results of direct tests of

price efficiency during days with high HFT activity to normal days. A common type of efficiency
test measures whether prices are efficient with respect to a specific information set, and I use
lagged order imbalances and market returns in this role.28
6.1. Order imbalance tests

First, I apply tests inspired by Chordia, Roll, and Subrahmanyam (2005) [CRS (2005)
hereafter] and CRS (2008) to examine the incorporation of information from lagged order
flows.29 These tests exploit the concept that efficient prices will follow a random walk, and ex-
ante conditioning information will not have explanatory power for future returns. CRS (2005)
show that order flow imbalances in individual stocks from one period can predict returns in the
next period over some short horizons. CRS (2008) show that the predictive value of lagged order
flow imbalance increases on days when liquidity is low, and present a test specification that
I adapt to test the effects of HFT on efficiency. The basic form of the model is:

Rt ¼ αþ β1OIBt−1 þ β2ðOIBt−1xHFTÞ þ β3MKTt þ ε; ð10Þ
where Rt is the midpoint return calculated from TAQ midpoints, OIBt-1 is the lagged order
imbalance, HFT is an indicator variable that identifies high-HFT participation days, and MKT is
the SPY S&P 500 ETF midpoint return calculated from TAQ. I use midpoint returns instead of
trade returns because predictability in transaction prices due to bid-ask bounce is not generally
considered evidence of informational inefficiency. The HFT indicator in my model replaces the
illiquid day indicator variable in CRS (2008), and is defined and discussed in Section 3.2. In
different versions of this test, HFT participation is alternately calculated using HFT_ALL,
HFT_DEMAND, or HFT_SUPPLY. Following CRS (2008), I use five-minute intervals to
measure returns and order imbalances. I also use one-minute intervals because CRS (2008) show
28I also use variance ratio analysis in a third unreported set of tests and find qualitatively similar results. I consider the
order imbalance and price delay approaches to be more interesting because they provide insight into the specific types of
information affecting price formation. The variance ratio results are available upon request.

29This efficiency test is also used in Chung and Hrazdil (2010a,b).
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that the five-minute horizon predictability has diminished over time, and because HFT effects
may be more pronounced at shorter horizons. OIB is defined as (Buy Dollar Volume – Sell
Dollar Volume)/ Total Dollar Volume. OIB is measured over the same interval length as returns.
MKTt is included to reduce the correlation in the residuals across stocks. The regression is
estimated one stock at a time, and the time series coefficients are averaged across stocks in a
reverse Fama and MacBeth (1973) procedure. T-statistics are corrected for correlation in the
regression residuals across stocks using the method in CRS (2008). This method adjusts the
measured standard errors upwards by [1+(N−1)ρ]1/2, where N is the number of individual
regressions and ρ is the mean pair-wise correlation across the residuals. If the relationship found
in CRS (2005, 2008) holds in this sample, then β1 will be positive. If the market is more efficient
when HFT activity is high, then the sum of β1 and β2 will be lower in absolute value than β1,
regardless of whether the CRS finding of a positive β1 holds.

The results from the order flow imbalance tests are shown in Table 8. The mean coefficients on
lagged order imbalance are positive and significant in all models except for the specification using
five-minute returns with HFT_SUPPLY participation, where it is still positive and marginally
significant. The number of stocks with positive and significant coefficients on lagged order
imbalance in the individual regressions is higher than the number of stocks with negative
significant coefficients, and often much higher. This is consistent with the findings in CRS (2008)
for most of their models and subsamples. For both five-minute and one-minute returns, the
explanatory power of lagged order imbalance is reduced on high HFT days when HFT
participation is defined using HFT_ALL or HFT_DEMAND. As an illustration, consider the five-
minute returns with HFT_ALL participation. The mean coefficient on lagged order imbalance is
0.0960. The mean coefficient on lagged order imbalance interacted with the HFT indicator is
−0.0704. This means that on high-HFT_ALL days, the predicted effect of lagged order imbalance
is.0255 (0.0960−0.0704), compared to 0.0960 on normal HFT_ALL days, and the t-statistic of
−2.69 on the coefficient on the interaction term is the test against the null that the difference in
lagged OIB effect between the high and normal days is 0. There are 37 (out of 120) individual
stock interaction coefficients that are significantly negative, while only two are significantly
positive. The results for all specifications using HFT_ALL or HFT_DEMAND participation are
qualitatively similar, but are stronger for HFT_DEMAND participation and with five-minute
returns. For example, the predictive power of order flow is reduced by roughly 20% on high-
HFT_DEMAND days for one-minute intervals, but it is almost completely removed for five-minute
intervals. In both specifications using HFT_SUPPLY participation, the mean interaction terms are
not significantly different from 0 and there is no strong pattern in individual coefficients.30
6.2. Price delay

I employ a second set of efficiency tests using the price delay measures from Hou and Moskowitz
(2005). While the CRS tests measure the incorporation of information in past order flow, price delay
measures the incorporation of information from market index returns. There are at least two reasons
to suspect HFT may affect the incorporation of index return information into individual stock prices.
30I also perform this analysis in the NYSE and NASDAQ subsamples and using an alternate intraday definition of HFT
participation. The NYSE and NASDAQ subsample results are very similar. The one minute HFT_ALL result becomes
marginally significant due to the smaller sample size, and all other results hold. The results with the intraday HFT
participation measure are robust for five-minute intervals and insignificant for one-minute intervals. The intraday HFT
participation results are in the Internet Appendix.



Table 8
Order imbalance efficiency regressions with HFT participation indicator variable interactions.

t-statistic

HFT participation definition Variable Coefficient Raw Adjusted Num pos sig Num neg sig

Panel A: 5-minute returns
HFT_ALL Intercept 0.0066 3.34 1.38 9 2

MKT 825.0872 36.52 15.07 120 0
OIB$t−1 0.0960 6.62 2.73 59 12
OIB$t−1�HFT −0.0704 −6.51 −2.69 2 37

HFT_DEMAND Intercept 0.0066 3.33 1.37 9 2
MKT 825.0813 36.52 15.06 120 0
OIB$t−1 0.1098 7.42 3.06 59 10
OIB$t−1�HFT −0.1175 −9.73 −4.01 4 57

HFT_SUPPLY Intercept 0.0066 3.36 1.39 9 2
MKT 825.1111 36.52 15.07 120 0
OIB$t−1 0.0651 4.38 1.81 47 24
OIB$t−1�HFT 0.0249 2.52 1.04 17 6

Panel B: 1-minute returns
HFT_ALL Intercept 0.0004 0.91 0.39 6 2

MKT 691.5641 31.78 13.60 120 0
OIB$t−1 0.1047 14.48 6.20 112 1
OIB$t−1�HFT −0.0193 −5.55 −2.37 7 53

HFT_DEMAND Intercept 0.0004 0.92 0.39 7 2
MKT 691.5636 31.78 13.60 120 0
OIB$t−1 0.1066 14.71 6.29 114 1
OIB$t−1�HFT −0.0244 −6.75 −2.89 8 64

HFT_SUPPLY Intercept 0.0004 0.95 0.41 6 2
MKT 691.5649 31.78 13.60 120 0
OIB$t−1 0.0992 13.58 5.81 111 3
OIB$t−1�HFT −0.0024 −0.79 −0.34 19 23

Regressions of 5-minute and 1-minute returns on contemporaneous market returns, lagged order imbalances, and lagged
order imbalances interacted with a high-HFT participation day indicator variable. Returns are from TAQ and are
calculated using the last midpoint in each interval. SPY ETF returns are used as the market proxy. OIB$t−1 is the dollar
value of buyer-initiated trades less the dollar value of seller-initiated trades divided by the total dollar volume during
interval t−1. A stock is defined as having a high-HFT participation day when its participation share is in its highest tercile
for that stock over the entire sample. Participation share is defined as HFT dollar volume divided by the stock’s total
dollar volume. Three versions of participation shares are calculated differing in whether HFT participation is defined as
trades where an HFT participates in either side (HFT_ALL), the liquidity-demanding side (HFT_DEMAND), or the
liquidity-supplying side (HFT_SUPPLY). Trades where an HFT participates in both sides are used in all three measures.
The regressions are estimated separated for each stock, and cross sectional means of coefficients across all stocks are
reported. T-statistics test the null that the mean is 0. Adjusted t-statistics are corrected for cross-correlation in the residuals.
The numbers of positive significant and negative significant coefficients in the individual stock regressions are reported,
with significance defined as a t-statistic greater than 2 in absolute value. The sample contains 120 stocks. All coefficients
are multiplied by 1,000.
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First, index returns are a plausible input variable to HFT strategies and index arbitrage is frequently
mentioned in informal descriptions of suspected HFT behavior. Second, Jovanovic and Menkveld
(2012) find that HFT activity is positively correlated to the explanatory power of the market index for
a stock’s returns. They attribute this effect to increased HFT activity when hard information has more
value, but causality could run the other way as well.

Hou and Moskowitz (2005) refine procedures used earlier by Brennan, Jegadeesh, and
Swaminathan (1993) and Mech (1993). While Hou and Moskowitz (2005) use price delay based
on weekly data as a stock characteristic in asset pricing tests, I calculate price delay with one-
minute and five-minute midpoint returns and employ it as an efficiency measure. To measure
price delay, I first estimate the regressions:

Rt ¼ αþ β1MKTt þ δ1MKTt−1 þ δ2MKTt−2…þ δ6MKTt−6 þ ε ð11Þ

Rt ¼ αþ β1MKTt þ ε; ð12Þ
where returns are defined as in (10), and six lags of MKT are used. As in the order flow
imbalance tests, I use both five-minute and one-minute intervals. These regressions are estimated
one stock at a time, separately for high-HFT participation days and normal days. I refer to (11) as
the unrestricted model and (12) as the restricted model. Then for each stock I calculate the
following price delay measures, separately on high-HFT participation days and normal days:

D1¼ 1–ðR2
rest=R

2
unrestÞ ð13Þ

D2¼ ðδ1 þ 2δ2 þ 3δ3…þ 6δ6Þ=ðβ1 þ δ1 þ 2δ2 þ 3δ3…þ 6δ6Þ ð14Þ

D3¼ ðTðδ1Þ þ 2Tðδ2Þ þ…þ 6Tðδ6ÞÞ=ðTðβ1Þ þ Tðδ1Þ þ 2Tðδ2Þ…þ 6Tðδ6ÞÞ; ð15Þ
where R2

rest is the R
2 from (12), R2

unrest is R
2 from (11), T(.) is the t-statistic on the coefficient in

(11), and other terms are as defined in (11). D1 is based on the procedure in Mech (1993) and can
be interpreted as the additional explanatory power from the lagged returns as a proportion of the
total explanatory power of the unrestricted regression. Coefficient ratios similar to D2 and D3
were used in Brennan, Jegadeesh, and Swaminathan (1993), but the weightings were introduced
by Hou and Moskowitz (2005). D2 gives more weight to coefficients on more distant lags of the
market return. This serves to increase the measure of price delay when higher coefficients on
distant returns indicate that more of the explanatory power in (11) is being driven by returns
farther in the past. D3 is similar to D2, still giving more weight to more distant lags, but adjusts
the value of each lagged coefficient based on its estimation precision. Therefore, a large
estimated coefficient at a long lag would increase D2, but may only slightly increase D3 if the
standard error of the coefficient estimate is high. Higher values of price delay reflect slower
adjustment. For each stock, I calculate each price delay measure separately for high-HFT days
and normal days, which are defined as in the order imbalance tests above. Then within each stock
I subtract price delay measures on high-HFT days from those on normal days, and average these
differences across stocks.

If stock prices incorporate market-wide information more efficiently on days when HFT
activity is high, then price delay should be lower on these days and the mean differences will be
negative. When testing whether the mean differences are significantly different from zero, it is
not clear whether the differences can be considered independent observations. The inputs to the
price delay measures are coefficients estimated from regressions on returns in the same sample
period. For each stock, two regressions are run in separate subsamples, with different
days entering the subsamples for each stock based on stock-specific HFT activity. If there are
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market-wide mechanisms that cause simultaneous price delays across multiple stocks, then there
will be some cross-sectional dependence in the differences because there is correlation between
high-HFT participation days across stocks. To correct for this, I use the same standard error
adjustment as in the order imbalance tests, calculated from residuals on the unrestricted
regression estimated over the full sample (i.e., not divided by the HFT participation category).
This is a conservative approach because the sample-splitting procedure should reduce the
dependence relative to that in the order imbalance tests.
The results from the price delay tests are shown in Table 9. Price delay is lower on high

HFT_ALL days and high HFT_DEMAND days in all specifications; the results using
HFT_SUPPLY are insignificant. For HFT_ALL and HFT_SUPPLY, the price delay difference
point estimates are all negative and significant using raw t-statistics. Using the conservative t-
statistics adjustment described above, the five-minute differences become insignificant. One-
minute differences are significant at the 10% level for D1 with HFT_ALL and are insignificant
with HFT_DEMAND. For D2, the differences remain statistically significant at the 5% level in
both specifications. For D3, the difference is significant at the 10% level using HFT_ALL and
significant at the 5% level using HFT_DEMAND. For HFT_SUPPLY, D2 and D3 differences are
significantly negative at five-minute horizons before the adjustment, and none are significant
after. Differences are insignificant in other HFT_SUPPLY specifications before the adjustment
and the point estimates are of mixed signs.31
6.3. Interpretation

Overall, these results suggest that prices are more efficient when HFT activity is high. Prices
tend to reflect more of the information in past order flows and past market returns on high-HFT
activity days, and the effect is stronger when they are demanding liquidity. Based on the
evidence presented here, I cannot conclude that HFT activity causes market efficiency increases,
only that there is a positive association. However, if HFTs possess comparative advantages in
profitably exploiting pricing inefficiencies, it seems unlikely that HFTs choose to trade more and
demand liquidity more when the market is more efficient.
The fact that the improvements in measured efficiency are observed primarily when

HFT_DEMAND is high is relevant to a claim made in CRS (2008). They conjecture that the
short-term predictive power of order imbalances is due to the limited ability of market makers
to absorb the imbalances without causing price pressure. They argue that liquidity
improves efficiency in this setting because arbitrage traders are more likely to trade on this
predictability when liquidity is high, and they do so by submitting market orders or marketable
limit orders. My results are consistent with a version of this story where HFTs play the role of
arbitrageur, and inconsistent with a version where HFTs are enhancing efficiency by improving
liquidity.
Price delay reductions on high-HFT days are generally larger at one-minute horizons than at

five-minute horizons. This is different from what was observed in the lagged order flow tests.
This could be interpreted as supporting the conjecture in Jovanovic and Menkveld (2012) that
HFTs trade more aggressively on hard information, including index returns. Their concept of
hard information focuses on how quickly incoming information can be used to update quotes.
31I also perform this analysis in the NYSE and NASDAQ subsamples. The subsample results are very similar. There is
some minor loss of test power due to the smaller sample size. The NYSE subsample has a slightly larger reduction in price
delay on high HFT_DEMAND days than the NASDAQ subsample at five-minute horizons, and all other results hold.



Table 9
Comparisons of price delay measures across high and normal HFT participation regimes.

t-Statistic

HFT participation definition PD measure High Normal Diff Raw Adjusted

Panel A: Five-minute returns
HFT_ALL D1 0.030 0.038 −0.008 −3.04 −1.22

D2 0.262 0.375 −0.113 −4.57 −1.83
D3 0.264 0.381 −0.117 −4.46 −1.79

HFT_DEMAND D1 0.030 0.040 −0.010 −3.89 −1.56
D2 0.250 0.382 −0.131 −4.69 −1.88
D3 0.251 0.386 −0.135 −4.54 −1.82

HFT_SUPPLY D1 0.037 0.033 0.003 1.49 0.60
D2 0.301 0.349 −0.047 −2.12 −0.85
D3 0.302 0.354 −0.051 −2.14 −0.86

Panel B: One-minute returns
HFT_ALL D1 0.068 0.084 −0.016 −4.31 −1.83

D2 0.312 0.445 −0.133 −5.14 −2.18
D3 0.311 0.448 −0.136 −4.71 −2.00

HFT_DEMAND D1 0.070 0.086 −0.016 −2.70 −1.15
D2 0.283 0.468 −0.186 −6.29 −2.67
D3 0.278 0.473 −0.195 −6.01 −2.55

HFT_SUPPLY D1 0.077 0.077 0.000 −0.10 −0.04
D2 0.403 0.389 0.014 0.65 0.28
D3 0.407 0.389 0.018 0.72 0.31

Price Delay measures use regressions of a stock’s return on contemporaneous and lagged market returns (unrestricted
regression) compared to regressions on contemporaneous returns only (restricted regression) to measure the speed with
which market information is incorporated into the stock’s price. D1 is derived from R2 from the restricted and
unrestricted regressions. D2 uses ratios of lagged coefficients to all coefficients and gives more weight to longer lags.
D3 is similar to D2 but uses t-statistics instead of coefficients, down-weighting less precise estimates. Higher values
indicate greater delays. Six lags of market returns are used. Returns are from TAQ and are calculated using the last
midpoint in each interval. SPY ETF returns are used as the market proxy. Price Delays are calculated from five-minute
returns in Panel A and 1-minute returns in Panel B. A stock is defined as having a high-HFT participation day when its
participation share is in its highest tercile for that stock over the entire sample. Participation share is defined as HFT
dollar volume divided by the stock’s total dollar volume. Three versions of participation shares are calculated, differing
in whether HFT participation is defined as trades where an HFT participates in either side (HFT_ALL), the liquidity-
demanding side (HFT_DEMAND), or the liquidity-supplying side (HFT_SUPPLY). Trades where an HFT participates
in both sides are used in all three measures. Price Delay differences are calculated separately for each stock, and cross
sectional means across all stocks are reported. T-statistics test the null that the mean is 0. Adjusted t-statistics are
corrected for cross-correlation in the residuals. The sample contains 120 stocks.
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They show evidence of this occurring very rapidly after index futures price changes, while it
would seem that multiple trades must be accumulated before an order flow imbalance becomes
meaningful.

7. Conclusion

In this paper, I analyze HFT trading performance, trading costs, and effects on market
efficiency using a sample of NASDAQ trades and quotes with HFT participation explicitly
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identified. HFTs seem to possess intraday market timing ability, and this result is not driven
solely by very short-term signals or trading at fleeting prices. The magnitude of their market
timing performance suggests that there is economically significant predictability in intraday
prices. Trading costs are low in this market, but spreads are wider on trades where HFTs provide
liquidity and tighter on trades where HFTs take liquidity. This suggests that HFTs provide
liquidity when it is scarce and consume liquidity when it is plentiful. Prices incorporate
information from order flow and market-wide returns more efficiently on days when HFT
participation is high. This effect is driven by HFT demand-side participation, implying that HFTs
improve price efficiency when demanding liquidity.
This new evidence can potentially provide guidance to theoretical researchers seeking to model HFT

behavior and market quality impacts. For example, the relatively low spreads earned on their liquidity
providing trades, their market timing performance, and the large share of their trades that demand
liquidity together suggest that one may not want to model HFTs as uniformly following market-
making strategies. The HFT intraday market timing results suggest that models where HFTs solely
profit from very short-term activities such as trading at fleetingly available prices may be incomplete.
It is worth reiterating that my data are limited to NASDAQ continuous trading and my focus is

on the collective trading and market quality impacts of the sample HFTs aggregated over a
variety of market conditions. These issues and other limitations of this study are discussed in
more detail above. Conclusions drawn in this setting may not generalize to other environments,
and continued study of these issues is clearly warranted. In particular, HFT trading strategies
and impacts on market quality in extreme market conditions are important topics for future
research.
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