Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization

Ian Dobson, Benjamin A. Carreras, Vickie E. Lynch, David E. Newman
2007 Chaos  
We give a comprehensive account of a complex systems approach to large blackouts caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics, dynamics and risk of series of blackouts with approximate global models. North American blackout data suggests that the frequency of large blackouts is governed by a power law. This result is consistent with the power system being a complex system designed and operated near criticality. The power law
more » ... s the risk of large blackouts consequential and implies the need for nonstandard risk analysis. Power system overall load relative to operating limits is a key factor affecting the risk of cascading failure. Blackout models and an abstract model of cascading failure show that there are critical transitions as load is increased. Power law behavior can be observed at these transitions. The critical loads at which blackout risk sharply increases are identifiable thresholds for cascading failure and we discuss approaches to computing the proximity to cascading failure using these thresholds. Approximating cascading failure as a branching process suggests ways to compute and monitor criticality by quantifying how much failures propagate. Inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near criticality and confirm this idea using a blackout model. Mitigation of blackout risk should take care to account for counter-intuitive effects in complex self-organized critical systems. For example, suppressing small blackouts could lead the system to be operated closer to the edge and ultimately increase the risk of large blackouts.
doi:10.1063/1.2737822 pmid:17614690 fatcat:2dpyhomxh5gfxabotoikaq65yu