(:Unkn) Unknown, University, My, Maria Iavarone, Xiaoxing Xi
Two dimensional (2D) materials, including graphene, hexagonal boron nitride and layered transition metal dichalcogenides (TMDs), have been a revolution in condensed matter physics and they are at the forefront of recent scientific research. They are being explored for their unusual electronic, optical and magnetic properties with special interest in their potential uses for sensing, information processing and memory. Molybdenum disulfide (MoS2) has been the flagship semiconducting TMD over the
more » ... ast ten years due to its unique electronic, optical and mechanical properties. In this thesis, we grow mono- to few layer MoS2 films using ambient pressure chemical vapor depositions (AP-CVD) to obtain high quality samples. We employ low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) to study the effect of layer number on the electronic density of states (DOS) of MoS¬2. We find a reduction of the magnitude of the quasiparticle band gap from one to two monolayers (MLs) thick. This reduction is found to be due mainly to a shift of the valence band maxima (VBM) where the conduction band minimum (CBM) does not change dramatically. Density functional theory (DFT) modeling of this system shows that the overlap of the interfacial S-pz orbitals is responsible for shifting the valence band edge at the Γ-point toward the Fermi level (EF), reducing the magnitude of the band gap. Additionally, we show that the crystallographic orientation of monolayer MoS2 with respect to the HOPG substrate can also affect the electronic DOS. This is demonstrated with five different monolayer regions having each with a unique relative crystallographic orientation to the underlying substrate. We find that the quasiparticle band gap is closely related to the moiré pattern periodicity, specifically the larger the moiré periodicity the larger the band gap. Using DFT, we find that artificially increasing the interaction between the film and the substrate means that the magnitude of the band gap reduces. This indicates that the moir [...]
doi:10.34944/dspace/3960 fatcat:zd7dg2jvvjhcpd4ct6esfzbphy