Seleção dinâmica de portfólios em média-variância com saltos Markovianos
[thesis]
Michael Viriato Araujo
Seleção dinâmica de portfólios em média-variância com saltos markovianos / M.V. Araujo. --São Paulo, 2007. 146 p. Tese (Doutorado) -A Jane Araújo Ferreira, minha esposa, pela sua compreensão, incentivo e apoio fundamentais para a conclusão deste trabalho. A minha família, Haroldo Euclides de Araújo, Alice Maria Viriato Araújo, Haroldo E. A. Júnior, Rodrigo V. Araújo e sobrinhos, que mesmo distantes acompanharam e estimularam a realização desta obra. i Agradecimentos Ao Professor Dr. Oswaldo
more »
... do Valle Costa pelo que muito me ensinou, pela oportunidade única de desenvolver este trabalho e pela paciência e disponibilidade na orientação desta Tese. A experiência adquirida ao longo do curso de doutorado foi sem dúvida engrandecedora para meu desenvolvimento pessoal e profissional. À Escola Politécnica da USP pela oportunidade de realização do curso de doutorado e a todos os professores do curso pelos ensinamentos transmitidos. Não posso deixar de citar a relevante contribuição do Banco Itaú S.A. pelo incentivo e disponibilização de tempo para realização deste trabalho. ii "There is nothing so disastrous as a rational investment policy in an irrational world ". John Maynard Keynes iii Resumo Investiga-se, em tempo discreto, o problema multi-período de otimização de carteiras generalizado em média-variância cujos coeficientes de mercado são modulados por uma cadeia de Markov finita. O problema multi-período generalizado de média-variância com saltos Markovianos (P GM V ) é um problema de controle estocástico sem restrição cuja função objetivo consiste na maximização da soma ponderada ao longo do tempo da combinação linear de três elementos: o valor esperado da riqueza do investidor, o quadrado da esperança desta riqueza e a esperança do quadrado deste patrimônio. A principal contribuição deste trabalho é a derivação analítica de condições necessárias e suficientes para a determinação de uma estratégia ótima de investimento para o problema P GM V . A partir deste modelo são derivadas várias formulações de médiavariância, como o modelo tradicional cujo objetivo é maximizar o valor esperado da riqueza final do investidor, dado um nível de risco (variância) do portfólio no horizonte de investimento, bem como o modelo mais complexo que busca maximizar a soma ponderada das esperanças da riqueza ao longo do tempo, limitando a perda deste patrimônio em qualquer momento. Adicionalmente, derivam-se formas fechadas para a solução dos problemas citados quando as restrições incidem somente no instante final. Outra contribuição deste trabalho é a extensão do modelo P GM V para a solução do problema de seleção de carteiras em média-variância com o objetivo de superar um benchmark estocástico, com restrições sobre o valor esperado ou sobre a variância do tracking error do portfólio. Por fim, aplicam-se os resultados obtidos em exemplos numéricos cujo universo de investimento são todas as ações do IBOVESPA. iv Abstract In this work we deal with a discrete-time multi-period mean-variance portfolio selection model with the market parameters subject to Markov regime switching. The multi-period generalized mean-variance portfolio selection model with regime switching (P GM V ) is an unrestricted stochastic control problem, in which the objective function involves the maximization of the weighted sum of a linear combination of three parts: the expected wealth, the square of the expected wealth and the expected value of the wealth squared. The main contribution of this work is the analytical derivation of necessary and sufficient conditions for the existence of an optimal control strategy to this P GM V model. We show that several mean-variance models are derived from the P GM V model, as the traditional formulation in which the objective is to maximize the expected terminal wealth for a given final risk (variance), or the complex one in which the objective function is to maximize the weighted sum of the wealth throughout its investment horizon, with control over maximum wealth lost. Additionally, we derive closed forms solutions for the above models when the restrictions are just in the final time. Another contribution of this work is to extend the P GM V model to solve the multi-period portfolio selection problem of beating a stochastic benchmark with control over the tracking error variance or its expected value. Finally, we run numerical examples in which the investment universe is formed by all the stocks belonging to the IBOVESPA. v
doi:10.11606/t.3.2007.tde-14012008-112255
fatcat:nhoepzte4rd5lil46udiinob3i