Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements

Yangxiaoyue Liu, Yaping Yang, Xiafang Yue
2018 Remote Sensing  
Global, near-real-time satellite-based soil moisture (SM) datasets have been developed over recent decades. However, there has been a lack of comparison among different passing times, retrieving algorithms, and sensors between SM products over various regions. In this study, we assessed seven types of SM products (AMSR_A, AMSR_D, ECV_A, ECV_C, ECV_P, SMOS_A, and SMOS_D) over four different continental in-situ networks in North America, the Tibetan Plateau, Western Europe, and Southeastern
more » ... Southeastern Australia. Bias, R, root mean square error (RMSE), unbiased root mean square difference (ubRMSD), anomalies, and anomalies R were calculated to explore the agreement between satellite-based SM and in-situ measurements. Taylor diagrams were drawn for an inter-comparison. The results showed that (1) ECV_C was superior both in characterizing the SM temporal variation tendency and absolute value, while ECV_A produced numerous abnormal values over all validation regions. ECV_P was able to basically express the SM variation tendency, except for a few overestimations and underestimations. (2) The ascending data (AMSR_A, SMOS_A) generally outperformed the corresponding descending data (AMSR_D, SMOS_D). (3) AMSR exceeded SMOS in terms of the coefficient of correlation. (4) The validation result of SMOS_D over the NAN and OZN networks was unsatisfactory, with a rather poor correlation for both original data and anomalies.
doi:10.3390/rs10071161 fatcat:crzukdz2onfkhhobgrxupcefk4