A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Diperfect Digraphs
2018
Anais do Encontro de Teoria da Computação (ETC)
unpublished
Let D be a digraph. A path partition P of D is a collection of paths such that {V (P ) : P 2 P } is a partition of V (D). We say D is ↵ -diperfect if for every maximum stable set S of D there exists a path partition P of D such that |S \ V (P )| = 1 for all P 2 P and this property holds for every induced subdigraph of D. A digraph C is an anti-directed odd cycle if (i) the underlying graph of C is a cycle x1x2 · · · x2k+1x1, where k 2, (ii) the longest path in C has length 2, and (iii) each of
doi:10.5753/etc.2018.3173
fatcat:bjykl3udibhytcrs6ykhambmqe