A framework for deriving drought indicators from GRACE

Helena Gerdener, Olga Engels, Jürgen Kusche
2019 Hydrology and Earth System Sciences Discussions  
<p><strong>Abstract.</strong> Identifying and quantifying drought in retrospective is a necessity for better understanding drought conditions and the propagation of drought through the hydrological cycle, and eventually for developing forecast systems. Hydrological droughts refer to water deficits in surface and subsurface storage, and since these are difficult to monitor at larger scales, several studies have suggested to exploit total water storage data from the GRACE (Gravity Recovery and
more » ... ity Recovery and Climate Experiment) satellite gravity mission to analyse them. This has led to the development of GRACE-based drought indicators. However, it is unclear how the ubiquitous presence of climate-related or anthropogenic water storage trends, which has been found from GRACE analyses, masks drought signals. Thus, this study aims at a better understanding of how drought signals, in the presence of trends and GRACE-specific spatial noise, propagate through GRACE drought indicators. Synthetic data are constructed and existing indicators are modified to possibly improve drought detection. Our results indicate that while the choice of the indicator should be application dependent, larger differences in robustness can be observed. We found a modified, temporally accumulated version of the Zhao et al. (2017) indicator in particular robust under realistic simulations. We show that trends and accelerations seen in GRACE data tend to mask drought signals in indicators, and that different spatial averaging methods required to suppress the spatially correlated GRACE noise affect the outcome. Finally, we identify and analyse two droughts in South Africa using real GRACE data and the modified indicators.</p>
doi:10.5194/hess-2019-268 fatcat:sdpl72ualra5fj3cbegbd3gxja