On a New Idiom in the Study of Entailment

R. E. Jennings, Y. Chen, J. Sahasrabudhe
2011 Logica Universalis  
This paper is an experiment in Leibnizian analysis. The reader will recall that Leibniz considered all true sentences to be analytically so. The difference, on his account, between necessary and contingent truths is that sentences reporting the former are finitely analytic; those reporting the latter require infinite analysis of which God alone is capable. On such a view at least two competing conceptions of entailment emerge. According to one, a sentence entails another when the set of atomic
more » ... equirements for the first is included in the corresponding set for the other; according to the other conception, every atomic requirement of the entailed sentence is underwritten by an atomic constituent of the entailing one. The former conception is classical on the twentieth century understanding of the term; the latter is the one we explore here. Now if we restrict ourselves to the formal language of the propositional calculus, every sentence has a finite analysis into its conjunctive normal form. Semantically, then, every sentence of that language can be represented as a simple hypergraph, H, on the powerset of a universe of states. Entailment of the sort we wish to study can be represented as a known relation, subsumption between hypergraphs. Since the lattice of hypergraphs thus ordered is a DeMorgan lattice, the logic of entailment thus understood is the familiar system, FDE of first-degree entailment. We observe that, extensionalized, the relation of subsumption is itself a DeMorgan Lattice ordered by higher-order subsumption. Thus the semantic idiom that hypergraph-theory affords * The research presented in this paper is supported by SSHRC research grant # 410-2008-2330.
doi:10.1007/s11787-011-0027-4 fatcat:axevkluf2rakdjbvlyfnisxexu