Behavior of imperfect band-limited coronagraphic masks in a high-contrast imaging system

Erkin Sidick, Daniel W. Wilson
2007 Applied Optics  
We investigate the behavior of imperfect band-limited occulting masks in a high-contrast imaging system through modeling and simulations. Grayscale masks having 1D Sinc 2 (linear-Sinc 2 ) amplitude transmission coefficient (Sinc 4 intensity transmittance) profiles as well as optical density and wavelengthdependent parasitic phases are considered occulters. We compare the behaviors of several, slightly different occulter transmittance profiles by evaluating the contrast performance of the
more » ... ntrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL). These occulters include a measured occulter, a standard Sinc 2 occulter, and several of its variations. We show that when an occulting mask has a parasitic phase, a modified Sinc 2 transmittance profile works much better than the standard Sinc 2 mask. We examine the impact of some fabrication errors of the occulter on the HCIT's contrast performance. We find through modeling and simulations that starlight suppression by a factor of more than 10 10 is achievable at least monochromatically on the HCIT with the occulting mask and the optics currently being used on the testbed. To the best of our knowledge, this is the first time that we investigate the behavior of a real (or fabricated) focal plane occulting mask in a high-contrast imaging system. We also briefly describe the approach used at JPL in fabricating a grayscale occulting mask and characterizing its transmittance and phase profiles.
doi:10.1364/ao.46.001397 pmid:17334428 fatcat:pxakp4rt4vbhzfernqnia3lhg4