A Macková, P Malinský, R Mikšová, H Pupíková, A Jágerová, R Böttger
En er getic ion beam serves as a ver sa tile an a lyt i cal tool for compositional char ac ter iza tion of all types of ma te ri als and struc tures in clud ing struc tural stud ies ap ply ing Rutherford Back-Scat ter ing spec trom e try (RBS) in chan nel ing mode on crys tal line ma te ri als. En er getic ion beams can be used ei ther as an an a lyt i cal tool or as de po si tion tech nique for nano and microstructure syn the sis for wide range of ma te-rial ap pli ca tion as elec tron ics, op
more » ... tics, spintronics, bio-medicine etc. [1-3]. RBS chan nel ing method is based on the charged par ti cle chan nel ing in the pe ri odic po ten tial of crys tal line atom rows. The pen e trat ing ion beam is fo cused to the for ward di rec tion and the back-scat ter ing prob a bil ity de creases sig nif i cantly, thus the yield of the back-scat tered ions in the spec tra is a de scend ing func tion of the in com ing ion beam an gle; see an ex am ple of the vi su al ized crys tal by ion beam in Fig ure 1 on the left [4]. Fol low ing the back-scat tered ion yield in de pend ence to the in com ing an gle of ions gives us in for ma tion about the im pu rity at oms po si-tions, dis or dered at oms in the in ter sti tials po si tions, displace ment at oms den sity and its depth pro files etc. Fun da men tal stud ies fo cused on ion beam pen e tra tion through the sin gle crys tal line sam ples in dif fer ent crys tal-lo graphic ori en ta tion and their en ergy stop ping can be provided also which topic is very rarely re ported in lit er a ture [5]. First in for ma tion con cern ing dop ant depth pro files, the sur face layer com po si tion and rel a tive dis or dered atom num ber in sur face layer can be eas ily de rived from the aligned spec trum (ion beam is aligned along the main crystal lo graphic axis and back-scat tered ions are re corded) and the ran dom spec trum (ion beam im pinges ran domly on the sam ple which is re al ized by the au tom a tized two axis ro ta-tional pro ce dure of the in ves ti gated sam ple dur ing the measure ment). The ad vanced pre cise in for ma tion about the in ves ti-gated struc tural changes can't be pro vided with out the MC sim u la tion, where the bi nary col li sions ap prox i ma tion with the close en coun ter prob a bil ity cal cu la tion is used. FLUX is a batch of rou tines, which en ables to sim u late ion flux (see Fig ure 1 on the right), ion mo men tum and en ergy for the var i ous crys tal lo graphic ori en ta tions, en ables to gen er-ate the spec trum of back-scat tered ions in de pend ence of the incoming ion beam angle (angular scans). Nano-struc ture de po si tion us ing ion im plan ta tion technique is very prom is ing tech nol ogy now a days. Rare earth and metal ion im plan ta tion into crys tal line ma te ri als (LiNbO 3 , sap phire, ZnO, GaN) serves as a pro gres sive way to de velop new ma te ri als with the ex traor di nary op ti cal, lu-mi nes cent and/or mag netic prop er ties [6-10]. The presented con tri bu tion in cludes sev eral ex am ples of the nano-struc tures pre pared by means of the ion im plan ta tion in above men tioned crys tal line ma te ri als, the char ac ter iza-Ó Krystalografická spoleènost Ma te ri als Struc ture, vol. 23, no. 4 (2016) 351 Fig ure 1. RBS chan nel ing crys tal im age vi su al ized by He+ 2 MeV ion beam on the left and MC FLUX sim u la tion of trans mit ting ion beam through d sil i con crys tal.