A patent search strategy based on machine learning for the emerging field of service robotics

Florian Kreuchauff, Vladimir Korzinov
2017 Scientometrics  
Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen
more » ... bedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract Emerging technologies are in the core focus of supra-national innovation policies. These strongly rely on credible data bases for being effective and efficient. However, since emerging technologies are not yet part of any official industry, patent or trademark classification systems, delineating boundaries to measure their early development stage is a nontrivial task. This paper is aimed to present a methodology to automatically classify patents as concerning service robots. We introduce a synergy of a traditional technology identification process, namely keyword extraction and verification by an expert community, with a machine learning algorithm. The result is a novel possibility to allocate patents which (1) reduces expert bias regarding vested interests on lexical query methods, (2) avoids problems with citational approaches, and (3) facilitates evolutionary changes. Based upon a small core set of worldwide service robotics patent applications we derive apt n-gram frequency vectors and train a support vector machine (SVM), relying only on titles, abstracts and IPC categorization of each document. Altering the utilized Kernel functions and respective parameters we reach a recall level of 83% and precision level of 85%.
doi:10.1007/s11192-017-2268-3 fatcat:yoj5wtar25hvxmuvdylkl26gau