Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison

Wajahat Kazmi, Sergi Foix, Guillem Alenyà, Hans Jørgen Andersen
2014 ISPRS journal of photogrammetry and remote sensing (Print)  
In this article we analyze the response of Time of Flight cameras (active sensors) for close range imaging under three different illumination conditions and compare the results with stereo vision (passive) sensors. Time of Flight sensors are sensitive to ambient light and have low resolution but deliver high frame rate accurate depth data under suitable conditions. We introduce some metrics for performance evaluation over a small region of interest. Based on these metrics, we analyze and
more » ... depth imaging of leaf under indoor (room) and outdoor (shadow and sunlight) conditions by varying exposures of the sensors. Performance of three different time of flight cameras (PMD CamBoard, PMD CamCube and SwissRanger SR4000) is compared against selected stereo-correspondence algorithms (local correlation and graph cuts). PMD CamCube has better cancellation of sunlight, followed by CamBoard, while SwissRanger SR4000 performs poorly under sunlight. stereo vision is more robust to ambient illumination and provides high resolution depth data but it is constrained by texture of the object along with computational efficiency. Graph cut based stereo correspondence algorithm can better retrieve the shape of the leaves but is computationally much more expensive as compared to local correlation. Finally, we propose a method to increase the dynamic range of the ToF cameras for a scene involving both shadow and sunlight exposures at the same time using camera flags (PMD) or confidence matrix (SwissRanger).
doi:10.1016/j.isprsjprs.2013.11.012 fatcat:qivcrkzgjvgcrpubih3qvd5taa