
ICIC Express Letters
Part B: Applications ICIC International c⃝2021 ISSN 2185-2766
Volume 12, Number 3, March 2021 pp. 231–241

HASHING GENERATION USING RECURRENT NEURAL
NETWORKS FOR TEXT DOCUMENTS

Raed Abu Zitar1,∗, Nidal Al-Dmour1, Mirna Nachouki1, Hanan Hussain1

and Farid Alzboun2

1College of Engineering and Information Technology
Ajman University

University Street, Al Jurf-1, Ajman 346, United Arab Emirates
∗Corresponding author: r.abuzitar@ajman.ac.ae

2Department of Information Technology
Public Sector

Fatemah Bent Al-Hasan St., Amman 11183, Jordan

Received September 2020; accepted November 2020

Abstract. In this paper a novel technique is proposed to generate hashing values for
text documents. The approach uses Recurrent Neural Networks (RNNs) for this purpose.
RNNs are dynamic and temporal type of Neural Networks (NNs) that evolve continuously
based on subsequent vectors of inputs. The capabilities of RNNs to incorporate present
values of inputs with previous values exploiting relations and semantics of the text make
it a competitive paradigm to discover the internal representations within text data in a
unique way. Two types of RNNs are tested and compared to traditional methods. Ade-
quate review has been done to existing techniques and the results obtained in this work
demonstrate the applicability of this artificial intelligence paradigm in generating hashing
values for plain text. RNNs are highly flexible, compact, and parallel in nature. Their
capabilities are exploited in this paper as future competent technique in text hashing.
Keywords: Recurrent neural network, Hashing methods, Collision probabilities, Intel-
ligent paradigms, Message digest

1. Introduction. Exchanging data among users through wired or wireless networks is
today facilitated by the development of various communication technologies and the In-
ternet. However, with the advancement of e-commerce and online banking, confidentiality
and integrity constitute a serious issue to ensure that data sent via a specific communi-
cation network is not revealed to unauthorized entities and has not been altered in an
illegal way. During data transmission, integrity is preserved by preventing insertion, dele-
tion and substitution breaches. Hash functions are used to protect against any intentional
or accidental alterations. A hash function is defined as the process that transforms a file
of an arbitrary size to another file of small fixed size called hashed value, “message digest”
or “fingerprint”. The proposed technique is used to protect, secure, and preserve integrity
of data. It is a one-way operation that transforms any input of plain text data into a par-
ticular output that is generally called cypher [1]. It should not be possible to retrieve the
value of the input from the output generated by the hashing algorithm. Therefore, this
hashing process provides transformation of data in one direction only, from the original
file to a message digest data. There is no opportunity to retrieve back the original file as
opposed to the encryption where data can be retrieved using a key.

To provide confidentiality and integrity for transmitted data, Saraireh et al. [2] have
proposed to integrate different security algorithms, such as hashing function as well as
cryptography and steganography techniques as methods to maintain security in data

DOI: 10.24507/icicelb.12.03.231

231



232 R. A. ZITAR, N. AL-DMOUR, M. NACHOUKI, H. HUSSAIN AND F. ALZBOUN

transmission [3]. The cryptography is used to convert initial data into incomprehensible
one. Steganography consists of using multimedia to hide the message in a particular
data carrier such as image, text, and video [4]. The hashing function is executed using
Message Digest 5 algorithm (MD5) to generate 128-bit hash value, which is considered
as a fast hashing algorithm [5] for providing data integrity services. This combination
provides a secure and robust communication media that guarantees that hidden data is not
visible over the cover images; this preserves the confidentiality and integrity of transmitted
data against threats and attacks. New hashing techniques integrate convolutional neural
network, discrete hash function learning, and ranking function optimizing into a unified
framework [6]. Other techniques use hashing variable length algorithm to secure messages
with the same length of results and also in addition to cryptography, this algorithm can
also be used as message compression with very reliable security [7]. In [8], Discrete Multi-
Graph Hashing (DMGH) is used to address a multi-graph learning technique to fuse
multiple views, and adaptively learns the weights of each view. This techniques is applied
for large-scale visual retrieval tasks. In [9], authors propose a robust image hashing based
on Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) for copying
detection. They used DCT to extract stable low-frequent coefficients for constructing
feature matrix and exploiting DWT to convert the feature matrix to a compact hashing.
Hash functions play an important role in network security, cryptography as well as in

digital signature to inspect the authenticity and reliability of transmitted data. They are
used for key generation in symmetric and asymmetric key cryptosystems. Different algo-
rithms such as secure hash algorithms: SHA-1, SHA-2, SHA-3, MD4, MD5 and Whirlpool
provide different levels of security [10].
Hash algorithms with digital signatures have been used in the cloud-computing envi-

ronment to ensure that the privacy and integrity of the stored data are preserved [11]. In
this domain, users usually store their data in the cloud without worrying about storage
management concerns. However, a crucial problem occurs related to data integrity: users
do not have control on the physical storage of their data, which makes it difficult to be
protected from being accessed by unauthorized entities. Different mechanisms generally
ensure data integrity in the cloud. They mainly detect integrity violations using various
techniques including checking sum, which is usually generated using a one-direction hash
function. In that method it is not possible to restore the original file based on a specific
check-sum value that could be modified or corrupted. For this reason, these mechanisms
cannot recover data once a damage is detected [12]. Digital signature has been proved
to ensure security and to authenticate access to data in a cloud-computing environment.
Nevertheless, it is not possible to generate a message digest using those techniques. A
comparison made between several hash functions indicated that in terms of security, it
is preferable to apply SHA-512 digital signature than MD5, but in terms of speed, the
latter one is much better than SHA-512. A signature scheme has been proposed to re-
solve data integrity issue in cloud-computing storage with better performance compared
to traditional algorithms [11]. Singh et al. [13] have also investigated on how to preserve
data integrity in cloud computing environment. Their mechanism depends on applying
a hash function to generating a hash value of the file to be saved in the cloud before
encryption. The next step is to store this hash value locally and to upload, encrypt and
save the file on the cloud. When the user retrieves the decrypted data from the cloud, a
hash value is calculated to ensure data integrity. If the new generated value matches the
earlier calculated one, then data integrity is preserved; otherwise, data has been modified.
Hash functions have been also used to ensure privacy and integrity in web applications,

which have experienced major development over the previous years and have changed
the way businesses are provided and scattered [14,15]. However, preserving the security
of data transmitted through web applications remains an issue, where various types of
attacks may occur [16]. Commonly, a password is converted to its hashed cypher form



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.3, 2021 233

before it is stored to ensure data integrity and security [17]. As part of the authentication
process, when the user needs to access a web application, the password entered is first
hashed and then converted to its cipher value before it is checked against its cipher value
stored. Usually a function transforms this plain password text into cipher text in order
to check data for its security, authenticity and integrity [18]. One of the most common
cryptographic hashing functions used in web applications, and specifically in e-commerce
applications, is MD5; it avoids data being forged or hacked and helps maintain data
integrity and security during transmission as well as in storage [19]. As mentioned by
Bhandari et al., the use of an enhanced MD5 algorithm to store data promotes user
privacy and helps web applications to be more secured [1].

Hash algorithms are also used to detect viruses while transmitting data. In [20], the
authors suggest to create and attach a code for each file using a cryptographic hash
function. This code is used later to detect if the file has been altered. This technique,
called virus localization, permits localizing the changes within the file. It consists on
repeatedly applying a cryptographic hash function that identifies the most significant and
recognized virus contamination procedures (such as rewriting, inserting, appending and
prepending techniques) in the various subsections of the traditional file [20].

Robust hashing algorithms have been applied to Model-Driven Engineering (MDE) to
protect artefacts in industrial environments. For equivalent input data, these algorithms
compute comparable outputs. For this reason, they have been used to create a key con-
structing block to protect intellectual property, assess authenticity, as well as to make
comparison and retrieve solutions for various application domains [21].

Various hash algorithms have been examined to enhance the security and efficiency of
transmitted data, mainly by increasing the message digest length they produce, which
raised another concern related to the increased bandwidth utilization and low output
[22]. This issue was examined in particular in [23] where the authors have presented a
hashing method called Efficient Hash Algorithm (EHA), which is mostly based on SHA-
160 architecture. EHA consists on increasing the algorithm’s complexity, keeping the
length of the message digest as smaller as possible. This technique allows to improve the
overall data security.

In [23], authors have evaluated the performance of their algorithm compared to exist-
ing techniques, such as MD2, MD5, SHA-160, SHA-256, SHA-384 and SHA-512. This
comparison was performed using NIST statistical test suite for random numbers and
avalanche criteria. The results showed that EHA is efficient in terms of unpredictability
and throughput; and accordingly, it may be applied for any situation dealing with sen-
sitive data. The weaknesses of MD5 were also discussed in [1], where the authors have
suggested to vary the length of this algorithm and to use a hash key in order to pro-
duce the cipher form related to the original data. To increase the security, integrity and
effectiveness of data, they have proposed a mixture algorithm based on flexible output
length, instead of the fixed output generated by the original MD5 algorithm. They have
also introduced a hash key to transform the plain data text into its cipher version to
maintain data security and integrity. They have implemented their enhanced MD5 with
web technologies such as PHP, JavaScript, HTML5 and CSS3 with PHP as server. It is
to be noted that the execution time of this enhanced version of MD5 is slower than the
original one, as a cryptographic technique, used to maintain data integrity and security,
that needs to process data [1].

Different hashing algorithms were also reviewed in [24] and the authors conclude that
the security and the length of a hash value are interrelated; when the length increases,
the security becomes higher. They have also found that MD5 algorithm is faster than the
SHA-512 procedure, which is more secure than MD5. As a conclusion, the authors stated
that today with the advanced technology, it becomes easier to crack the hashes generated



234 R. A. ZITAR, N. AL-DMOUR, M. NACHOUKI, H. HUSSAIN AND F. ALZBOUN

by SHA-512. For this reason, they recommend considering adding various techniques that
make attacks become slower, such as PBDKF2, BCrypt and SCrypt [24].
Based on the previous introduction, our proposed technique offers an original approach

that relies more on computations rather than symbolic and logical processing of bits and
bytes. The contribution of the paper can be summarized in the following points.

1) The RNN, a new hashing technique that utilizes artificial intelligence paradigms, is
used. The RNN is parallel and compact in nature. The parallelism is an advantage
that can be utilized with parallel programing and multithreading for faster execution
of code.

2) The RNN method provides flexibility in message length as increasing the number of
neurons will provide more hashing capabilities. This flexibility is advantageous over
other methods and can be tuned to compromise between the needed level of integrity
and the speed of execution.

3) The weights of the RNN that are used in the hashing are not unique and can vary with
different initializations. This is an advantage that adds more security to this method.
The weights could be updated frequently which makes it harder for hackers to crack
the hashing.

4) For more varieties and for the option of adding more elusiveness in the hashing process,
two types of RNN can be used: one with single feedbacks and the other one with full
feedbacks. Both could be alternatively selected in hashing in a random order.

The organization of the rest of the paper can be summarized as follows:

1) Section 2: Literature review and comparisons between the recent techniques of hashing.
2) Section 3: The proposed RNN method for hashing.
3) Section 4: Discussions and conclusions.

2. Literature Review. In this section, different hashing techniques with more technical
and historical details are presented. Various cryptographic hash functions, such as MD5,
SHA-1, SHA-2, and SHA-3, have been used to apply privacy, confidentiality, security,
and integrity of transmitted data [1]. Using mathematical formulas, they convert a text
having some data of a random-length to a fixed-length hash output. The input data,
which can be a password or a simple key that requests to be protected, is almost difficult
to regenerate from its hash value alone [2].
MD5 is a message digest algorithm that was created in 1992 to be a safe replacement

of its antecedent MD4 [3]. It takes an input data of random-length and produces an
output of 128-bit hash code. The input message is divided into portions of 512-bit blocks
(sixteen 32-bit words). If the input data is not an integer multiple of 512-bit blocks,
it is expanded so that its size is divisible by 512 [4]. MD5 consists of four rounds of 16
equivalent calculations, or 64 operations. With MD5, it is easy to produce a hash collision
that occurs when two different inputs generate the same hash output. For this reason,
MD5 is considered unsecure, as there are a significant number of collision attacks. MD5
is generally useful to process data of short length such as passwords, credit card numbers,
or any field values of data to be stored in databases systems [4]. SHA-1 is equivalent to
MD5 and generates a 160-bit hash value. It takes an input data of random length and
produces an output of 160-bit message digest. The input data is broken up into portions
of 512-bit blocks (sixteen 32-bit words). In case the input data is not an integer multiple
of 512-bit blocks, it is expanded so that its length is divisible by 512 [4]. SHA-1 function
works on a 160-bit state, divided into five 32-bit words. An input data requires 80 similar
operations to be processed. SHA-1, or SHA-160, was being used in various applications.
It was known to be much more secure than the previous hashing methods. Limited attacks
were identified on SHA-1, which are much less severe than those recognized on MD5 [4].
However, in 2005, different security issues and cryptographic weaknesses were identified



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.3, 2021 235

with this algorithm, which arises the need to apply a stronger hash algorithm [2]. SHA-
2 was developed to produce a more secure and robust hash function than SHA-1. Its
algorithm is based on SHA-1 and has three comparable hash methods with different block
sizes, known as SHA-256, SHA-384, and SHA-512, which differ in the word and block sizes.
They all take an input of random size. SHA-256 produces an output of 256-bit hash code,
using 32-bit words, 512-block size, and 64 similar rounds. SHA-384 makes an output of
384-bit hash code, using 64-bit words, 1024-block size, and 80 similar rounds, and SHA-512
generates an output of 512-bit hash value with 64-bit words, 1024-block size, and 80 similar
rounds [4]. These three SHA-2 functions use unrelated number of rounds, unrelated shift
values, and additive coefficients, but their structures are basically the same. Regarding
security issues, no successful reports of any security-related attacks were reported [2].
SHA-3 was published in 2015, its structure is different from MD5, SHA-1, and SHA-2
structure, but supports the same hash lengths as SHA-2. The primary purpose behind
the creation of SHA-3 algorithm is to be resistant to assaults like length expansion, in
opposition to MD5 and SHA-1 that were decided to be unprotected to theoretical attacks
[5]. In their paper [5], the authors discussed some limitations related to the application
of different hash functions. They recommended not using the MD5 algorithm to encrypt
passwords. This is mainly because this algorithm is fast in processing small size of data
and that an attacker can try billions of candidate passwords per second. The authors
have also found out that, SHA-1 requires a lot of computing power and resources, and
that SHA-256 and SHA-512 have an increased resistance to the collision because they
produce more extended outputs (256-bit and 512-bit respectively) than SHA-1 (160-bit).

In [2], the authors analyzed the security level of hash functions based on the random-
ness and uncorrelated output generated by the function for a correlated or random data.
They have found out that all SHA algorithms generate arbitrary results because they have
succeeded in the randomness tests that were applied. The authors have also compared
the acceptance of SHA-1 and SHA-2 in the market. They found out that SHA-2 func-
tions were not adopted quickly in comparison to SHA-1 because there is no support for
SHA-2 on systems running Windows XP SP2 or older. In 2017, Microsoft declared that
Internet Explorer and Edge would stop using SHA-1. In 2015, the Google Chrome group
broadcasted a plan where they have stopped progressively the use of SHA-1 in their web
browser [2].

A comparison among SHA-1, SHA-256 and MD5 was made in [6] regarding encryption
time, power consumption, and latency for different input sizes. The authors have con-
cluded that there is slight difference in the encryption times of the three methods for an
input length of 600kb. Conversely, this difference which increases with the input length
becomes more important. Moreover, for an input length of one Mb, SHA-256 spent more
time to be executed than MD5. Similarly, SHA-256 consumed five times more than MD5
to encrypt an input data of length 10MB. Concerning both power consumption and la-
tency, it was noticed that MD5 used the least amount of power and produced the greatest
latency, pursued by SHA-256, then SHA-1.

In conclusion, the authors declared that MD5 is the best algorithm with regards to
power consumption and encryption time. SHA-1 spent the greatest power among these
three functions. MD5 has the highest latency, tailed by SHA-256, then SHA-1 [24]. Finally,
SHA-256 is more secure than SHA-1 and MD5. However, it is considered lengthy and
time consuming compared to the other members of its family [2] for data input of long
size. However, it is considered faster than SHA-512 for hashing small data strings.

In our work, we are introducing a new method that technically differs from all previous
techniques. We demonstrate the use of artificial intelligence paradigms in performing a
highly nonlinear task of generating hashing output. The approach is flexible and provides
many possible solutions for the same input text depending on the initial weights. It will
be difficult to crack this hashing generated by the RNN as it is possible to re-initialize



236 R. A. ZITAR, N. AL-DMOUR, M. NACHOUKI, H. HUSSAIN AND F. ALZBOUN

Table 1. Comparison between various cryptographic algorithms

Parameters
Algorithms

MD5 SHA-1 SHA-256 SHA-384 SHA-512 SHA-3
Block size

512 512 512 1024 1024 1600-2∗bits
(bits)

Message digest
128 160 256 384 512 256

size (bits)
Word size

32 32 32 64 64 64
(bits)

Maximum
264−1 264−1 264−1 2128−1 2128−1 ∞

message size
Rounds 4 ∗ 16 = 64 80 64 80 80 24
Collision

Yes
Theoretical

None None None None
found attack

Performance
(Cycle per 4.99 3.47 7.63 5.12 5.06 8.59
byte cpb)

and, or, and, or,
and, or, and, or, and, or,

and, xor,
Operations

xor, rot xor, rot
xor, rot, xor, rot, xor, rot,

not, rot
shr shr shr

First
1992 1995 2001 2012 2012 2015

published

the RNN at different random times for different groups of inputs. In the next section we
will describe this approach and show some example for two types of RNNs.

3. The Recurrent Neural Network Approach. The hashing or content-based signa-
ture is generated for every block of data during its subjection to the RNN. The stream
of data sourcing from the block is fed to the RNN as binary values based on the ASCII
code of the plain text characters. Every 10 integer values, generated from the plain text
input, are fed to the RNN. Recurrent Neural Networks (RNNs) have feedbacks from its
own outputs to its inputs. The dynamics are temporal and are affected by current and
previous inputs [25-28]. The idea here is to incorporate both the sequence of characters
and the order of the characters within the inputs of the RNN. Different orders of the
same characters will generate different RNN outputs. Therefore, the final state of the
outputs of the RNN is not only a function of its current input but also a function of the
history of inputs. With this mechanism, the final output of the RNN, which is a real
number, will definitely reflect the texture and the structure of the plaintext input block.
In that sense the final output vector of the RNN can serve as hashing or content-based
signature of the current block of plaintext. The RNN is initialized with random values
of weights based on some random seed number. The RNN will end up generating wide
range of possible values of signatures generated from the different blocks. The RNN uses
a real value activation function which makes it almost impossible for two different blocks
to have the same signature.
If a block of length of 1000 characters is used, then 100 generation cycles of the RNN

will be executed considering 10 integers (ASCII characters) are fed sequentially to the
RNN, 10 characters at a time. At the end of every block, signature (hashing value) of
real values with a number equal to the number of neurons of the RNN is generated. The
signatures are converted to binary and transmitted with the block to the receiving end.
Figure 1 shows the architecture of the NN and the RNN. The outputs of the neurons are
real values that are represented with 12 bits each (5-bit base, 6-bit exponents, and 1-bit



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.3, 2021 237

Figure 1. Architectures of neural networks

sign). For N neurons in the RNN, we have N × 12 bits to be transmitted as signatures.
On the other hand, for the 10 initial weights (weight for every input) of a single neuron
in the RNN we have 120 bits for every neuron. For the N neurons, we have N × 120 bits
length key used in generating the hashing value of the block, and this is in addition to
the bits of the signatures. A total of N × 132 bits are needed to be packed with the load
data (1000 characters) and transmitted.

More than 1000 simulations using 8 neurons were implemented. No collisions were
detected. Two cases were demonstrated: one self feedback RNNs and fully connected
feedback RNNs. If an RNN reaches a stage of stagnation during hashing generation, the
RNN weights are re-initialized and the process of calculating the hashes continues until
the block is finished. The real values generated by the neurons at the last input vector
of the block are the signature (hash) of that block. Table 4 shows comparable results
for the two types of RNNs: RNN1 and RNN2 (single self feedback, and full feedback).
The results are almost identical and the performance is comparable to the other standard
techniques. The fact that there was one self-feedback or full feedback architecture did
have large effect on the results. Figure 2 summarizes the hashing values generation using
RNNs. Note that linear activations are used in the RNN to generate real value outputs for
the signatures. This provides more versatility and variance in the output values. Below
are some examples of the hashing processes: RNN1 is RNN with one self feedback, and
RNN2 is RNN with complete feedback to all neurons.

Text1 example:
“Forensic science, also known as criminalistics, is the application of science to criminal

and civil laws, mainly on the criminal side during criminal investigation, as governed
by the legal standards of admissible evidence and criminal procedure. Forensic scientists
collect, preserve, and analyze scientific evidence during the course of an investigation.
While some forensic scientists travel to the scene of the crime to collect the evidence
themselves, others occupy a laboratory role, performing analysis on objects brought to
them by other individuals”.

Hashing codes: 8 neurons output, each with 12 bits, total is 96 bits, which is 24 possible
hex values for every hash. Please see Table 2 below.

Table 2. Samples of the signature values (1)

RNN1 RNN2
13821A 0775E7
0188C4 06B05F
04F057 02E54A
036136 05156E



238 R. A. ZITAR, N. AL-DMOUR, M. NACHOUKI, H. HUSSAIN AND F. ALZBOUN

Figure 2. The RNN hashing generation process

Text2 example:
“Pharmacy is the science and technique of preparing, dispensing, and reviewing drugs

and providing additional clinical services. It is a health profession that links health sciences
with pharmaceutical sciences and aims to ensure the safe, effective, and affordable use of
drugs. The professional practice is becoming more clinically oriented as most of the drugs



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.3, 2021 239

are now manufactured by pharmaceutical industries. Based on the setting, the pharmacy
is classified as a community or institutional pharmacy. Providing direct patient care in
the community of institutional pharmacies are considered clinical pharmacy”.

Hashing codes: 8 neurons output, each with 12 bits, total is 96 bits, which is 24 hex
values for every hash. Please see Table 3 below.

Table 3. Samples of the signature values (2)

RNN1 RNN2
07F07C 036331
0AC5C1 123BE6
01B4D6 0C0D2B
060C00 0D1216

Table 4. The recurrent NN performance

Parameters RNN1 RNN2
Block size (characters) 1000 1000

Message digest size (characters) 10 10
Word size (characters) 10 10

Collision found None None
Performance (Cycle per byte cpb) 9.9 10.8

Operations and, or, xor, rot, shr and, or, xor, rot, shr

4. Discussions and Conclusions. Sufficient literature review has been introduced for
different hashing techniques in the previous sections. The RNN approach was introduced
with two different architectures: first case was single self-feedback and the other case was
full feedback to all neurons. The RNN was used to generate the hashing values with ran-
dom initializations for the weights. There was no training at all for the RNNs. The RNNs
were used only in generating the codes for every block of 1000 characters. A number of
eight neurons were used in every case. The fact that we have fast computers nowadays
and a complexity not exceeding O(n2) resulted in execution time that is very acceptable.
The contribution of this work is mainly introducing an artificial intelligence based para-
digm that can be competitive in the generation of hashing values. The comparable results
with other techniques were encouraging to proceed further in investigating this method.
The message digest and word sizes were smaller than other techniques; however, that did
not affect the performance of the RNN as no collisions were found at all in the simula-
tions. The biggest advantage with using the RNN is that it is impossible to crack the
hashing. There are infinite possible initial weights that can accomplish the hashing and
those could be updated frequently to increase the security level to the highest. However,
those weights need to be encrypted themselves when sending from the transmitter to the
receiver. Those weights could be appended to the data and encrypted with it. If the
data itself was breached, then the hashing itself will be irrelevant. Of course, this is a
very unlikely case especially if an encryption mechanism with appropriate keys was used.
If eight weights were used in the RNN with 12 bits representation for each weight, then
the hashing key used is of 10 × 12 × 8 = 960 bits length. Add to that the length of the
signature reached after finishing the block of 1000 characters which is equal to 8×12 = 96
bits, we will end up with 1056 bits which need to be appended to the 1000 characters of
data. Assuming each character is 8 bits, this implies 13.2% increase in the data block
size. Based on the no collision cases we achieved in the 1000 experiments we made, this
is a very good result in terms of security and data integrity.



240 R. A. ZITAR, N. AL-DMOUR, M. NACHOUKI, H. HUSSAIN AND F. ALZBOUN

Future work will include further testing and simulations by increasing the block size
to more than 1000 characters and monitoring the collision cases. We would like to know
to what extent we can increase the block size before any collisions are reached and the
same time achieving fast execution for the hashing operations. We would like to apply
our hashing on different types data other than the plain text and evaluate its efficiency.

REFERENCES

[1] A. Bhandari, M. Bhuiyan and P. W. C. Prasad, Enhancement of MD5 algorithm for secured web
development, Journal of Software, vol.12, no.4, pp.240-252, 2017.

[2] S. Saraireh, J. Al-Saraireh and M. Saraireh, Integration of hash-crypto-steganography for efficient
security technique, International Journal of Circuits, Systems and Signals Processing, vol.12, pp.274-
278, 2018.

[3] H.-H. Chang, Y.-C. Chou, C.-C. Tseng and T. K. Shih, A high payload steganography scheme for
color images based on BTC and hybrid strategy, Journal of Computers, vol.26, no.2, pp.46-55, 2015.

[4] E. P. Singh and E. P. S. Saini, A novel approach to robust and secure image steganography based on
hash and encryption, International Journal of Engineering Sciences and Research Technology, vol.5,
no.3, pp.194-201, 2016.

[5] Y. Sasaki and L. Wang, Improved single-key distinguisher on HMAC-MD5 and key recovery attacks
on Sandwich-MAC-MD5, International Conference on Selected Areas in Cryptography, pp.493-512,
2014.

[6] X. Lu, Y. Chen and X. Li, Discrete deep hashing with ranking optimization for image retrieval,
IEEE Transactions on Neural Networks and Learning Systems, 2019.

[7] R. Rahim et al., Hashing variable length application for message security communication, ARPN
Journal of Engineering and Applied Sciences, vol.14, no.1, pp.259-264, 2019.

[8] L. Xiang, X. Shen, J. Qin and W. Hao, Discrete multi-graph hashing for large-scale visual search,
Neural Processing Letters, vol.49, no.3, pp.1055-1069, 2019.

[9] Z. Tang, F. Yang, L. Huang and M. Wei, DCT and DWT based image hashing for copy detection,
ICIC Express Letters, vol.7, no.11, pp.2961-2967, 2013.

[10] P. P. Pittalia, A comparative study of hash algorithms in cryptography, International Journal of
Computer Science and Mobile Computing, vol.8, no.6, pp.147-152, 2019.

[11] N. G. Kumar and K. P. K. Rao, Hash based approach for providing privacy and integrity in cloud
data storage using digital signatures, International Journal of Computer Science and Information
Technologies, vol.5, no.6, pp.8074-8078, 2014.

[12] M. A. Shah, R. Swaminathan and M. Baker, Privacy-Preserving Audit and Extraction of Digital
Contents, HPL Technical Report No. HPL-2008-32, 2008.

[13] S. Singh, P. Sharma and D. Arora, Data integrity check in cloud computing using hash function,
International Journal of Advanced Research in Computer Science, vol.8, no.5, pp.1974-1978, 2017.

[14] V. M. Lomte, D. R. Ingle and B. B. Meshram, A secure web application: E-tracking system, Inter-
national Journal of UbiComp, vol.3, no.4, pp.1-18, 2012.

[15] J. Maan, Mobile web – Strategy for enterprise success, International Journal on Web Service Com-
puting, vol.3, no.1, pp.45-53, 2012.

[16] S. Rafique, M. Humayun, Z. Gul, A. Abbas and H. Javed, Systematic review of web application
security vulnerabilities detection methods, Journal of Computer and Communications, vol.3, no.9,
pp.28-40, 2015.

[17] M. J. Wang and Y. Z. Li, Hash function with variable output length, Proc. of the 2015 International
Conference on Network and Information Systems for Computers, 2015.

[18] P. Ora and P. R. Pal, Data security and integrity in cloud computing based on RSA partial homo-
morphic and MD5 cryptography, Proc. of the 2015 International Conference on Computer, Commu-
nication and Control, 2015.

[19] Z. Hu and Y. Lu, A method based on MD5 and time for preventing deception in electronic commerce,
Proc. of the International Conference on Cyberspace Technology, 2014.

[20] G. Di Crescenzo and F. Vakil, Cryptographic hashing for virus localization, Proc. of the 4th ACM
Workshop on Recurring Malcode (WORM), 2006.

[21] S. Martinez, S. Gerard and J. Cabot, Robust hashing for models, The 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems (MODELS’18), 2018.

[22] H. Hayouni, M. Hamdi and T.-H. Kim, A novel efficient approach for protecting integrity of data
aggregation in wireless sensor networks, Proc. of 2015 International Wireless Communications and
Mobile Computing Conference, pp.1193-1198, 2015.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.3, 2021 241

[23] G. K. Sodhi and G. S. Gaba, An efficient hash algorithm to preserve data integrity, Journal of
Engineering Science and Technology, vol.13, no.3, pp.778-789, 2018.

[24] P. V. Rao, S. G. Rao, P. C. Reddy, G. R. Sakthidharan and Y. M. Kumar, Improve the integrity
of data using hashing algorithms, International Journal of Innovative Technology and Exploring
Engineering (IJITEE), vol.8, no.7, 2019.

[25] R. Chandra and M. Zhang, Cooperative coevolution of Elman recurrent neural networks for chaotic
time series prediction, Neurocomputing, vol.86, pp.116-123, 2012.

[26] T. Gao, X. Gong, K. Zhang, F. Lin, J. Wang, T. Huang and J. M. Zurada, Recalling-enhanced
recurrent neural network: Conjugate gradient learning algorithm and its convergence analysis, In-
formation Sciences, vol.519, pp.273-288, 2020.

[27] D. Kreuter, H. Takahashi, Y. Omae, T. Akiduki and Z. Zhang, Classification of human gait accel-
eration data using convolutional neural networks, International Journal of Innovative Computing,
Information and Control, vol.16, no.2, pp.609-619, 2020.

[28] R. A. Zitar, Capturing the Brachistochrone: Neural network supervised and reinforcement approach-
es, International Journal of Innovative Computing, Information and Control, vol.15, no.5, pp.1747-
1761, 2019.


