A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Neuro-Symbolic Word Embedding Using Textual and Knowledge Graph Information
2022
Applied Sciences
The construction of high-quality word embeddings is essential in natural language processing. In existing approaches using a large text corpus, the word embeddings learn only sequential patterns in the context; thus, accurate learning of the syntax and semantic relationships between words is limited. Several methods have been proposed for constructing word embeddings using syntactic information. However, these methods are not trained for the semantic relationships between words in sentences or
doi:10.3390/app12199424
fatcat:wwymdfrlbvdhfod72qd7rcg4ze