Room-temperature-deposited dielectrics and superconductors for integrated photonics

Jeffrey M. Shainline, Sonia M. Buckley, Nima Nader, Cale M. Gentry, Kevin C. Cossel, Justin W. Cleary, Miloš Popović, Nathan R. Newbury, Sae Woo Nam, Richard P. Mirin
2017 Optics Express  
We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored
more » ... e utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.
doi:10.1364/oe.25.010322 pmid:28468405 fatcat:s76mkiwrdvd47bha35jv6qxche