A Line Loss Management Method Based on Improved Random Forest Algorithm in Distributed Generation System

Wang Zongbao
2021 Distributed Generation & Alternative Energy Journal  
The distributed power generation in Gansu Province is dominated by wind power and photovoltaic power. Most of these distributed power plants are located in underdeveloped areas. Due to the weak local consumption capacity, the distributed electricity is mainly sent and consumed outside. A key indicator that affects ultra-long-distance power transmission is line loss. This is an important indicator of the economic operation of the power system, and it also comprehensively reflects the planning,
more » ... sign, production and operation level of power companies. However, most of the current research on line loss is focused on ultra-high voltage (≧110 KV), and there is less involved in distributed power generation lines below 110 KV. In this study, 35 kV and 110 kV lines are taken as examples, combined with existing weather, equipment, operation, power outages and other data, we summarize and integrate an analysis table of line loss impact factors. Secondly, from the perspective of feature relevance and feature importance, we analyze the factors that affect line loss, and obtain data with higher feature relevance and feature importance ranking. In the experiment, these two factors are determined as the final line loss influence factor. Then, based on the conclusion of the line loss influencing factor, the optimized random forest regression algorithm is used to construct the line loss prediction model. The prediction verification results show that the training set error is 0.021 and the test set error is 0.026. The prediction error of the training set and test set is only 0.005. The experimental results show that the optimized random forest algorithm can indeed analyze the line loss of 35 kV and 110 kV lines well, and can also explain the performance of 110-EaR1120 reasonably.
doi:10.13052/dgaej2156-3306.3711 fatcat:ei3cdufhirfuhim2lprcprvtxe