Charmed bottom baryon spectroscopy from lattice QCD

Zachary S. Brown, William Detmold, Stefan Meinel, Kostas Orginos
2014 Physical Review D  
We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with $J^P = \frac12^+$ and $J^P = \frac32^+$. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven
more » ... acings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using $SU(4|2)$ heavy-hadron chiral perturbation theory including $1/m_Q$ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
doi:10.1103/physrevd.90.094507 fatcat:rmyjipz4dfhi3ccu73xe5osuwq