Predictive Navigation by Understanding Human Motion Patterns

Shu-Yun Chung, Han-Pang Huang
2011 International Journal of Advanced Robotic Systems  
To make robots coexist and share the environments with humans, robots should understand the behaviors or the intentions of humans and further predict their motions. In this paper, an A*-based predictive motion planner is represented for navigation tasks. A generalized pedestrian motion model is proposed and trained by the statistical learning method. To deal with the uncertainty, a localization, tracking and prediction framework is also introduced. The corresponding recursive Bayesian formula
more » ... presented as DBNs (Dynamic Bayesian Networks) is derived for real time operation. Finally, the simulations and experiments are shown to validate the idea of this paper.
doi:10.5772/10529 fatcat:fo2jlr5w5fhebm3lkbkz63ekia