Automated Meter Reading Detection Using Inception with Single Shot Multi-Box Detector

Arif Iqbal, Abdul Basit, Imran Ali, Junaid Babar, Ihsan Ullah
2021 Intelligent Automation and Soft Computing  
Automated meter reading has recently been adopted by utility service providers for improving the reading and billing process. Images captured during meter reading are incorporated in consumer bills to prevent reporting false reading and ensure transparency. The availability of images captured during the meter reading process presents the potential of completely automating the meter reading process. This paper proposes a convolutional network-based multi-box model for the automatic meter
more » ... The proposed research leverages the inception model with a single shot detector to achieve high accuracy and efficiency compared to the existing state-of-the-art machine learning methods. We tested the multi-box detector with Mobile-Net and Faster Region-based Convolutional Neural Networks (R-CNN). The results depict that the proposed method not only outperforms the two baseline methods, but also requires less iterations (epochs) to train and rapidly improve precision with 96% accuracy. The dataset used for this research has been collected, preprocessed, and made publicly available to encourage further research and to serve as a baseline for the comparison.
doi:10.32604/iasc.2021.014250 fatcat:6p6mks3zxnbqdgj2zq4g75q2ti