A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Least Squares Approximation of Flatness on Riemannian Manifolds
2020
Mathematics
The purpose of this paper is fourfold: (i) to introduce and study the Euler–Lagrange prolongations of flatness PDEs solutions (best approximation of flatness) via associated least squares Lagrangian densities and integral functionals on Riemannian manifolds; (ii) to analyze some decomposable multivariate dynamics represented by Euler–Lagrange PDEs of least squares Lagrangians generated by flatness PDEs and Riemannian metrics; (iii) to give examples of explicit flat extremals and non-flat
doi:10.3390/math8101757
fatcat:oih7324z3fannju5xgmppqhl3q