The Structure of the Homunculus. I. Shape and Latitude Dependence from H2and [Feii] Velocity Maps of η Carinae

Nathan Smith
2006 Astrophysical Journal  
High resolution long-slit spectra obtained with the Phoenix spectrograph on Gemini South provide our most accurate probe of the three dimensional structure of the Homunculus around eta Car. The new near-infrared spectra dramatically confirm the double-shell structure inferred previously from thermal dust emission, resolving the nebula into a very thin outer shell seen in H2 21218, and a warmer, thicker inner layer seen in [Fe II] 16435. The thin H2 skin hints that the most important mass loss
more » ... ring the 19th century eruption had a very short duration of less than 5 yr. H2 emission traces the majority of the mass in the nebula, and has an average density of order 10^6.5 cm-3. This emission, in turn, yields our first definitive picture of the exact shape of the nebula, plus a distance of 2350pm50 pc and an inclination angle of 41deg (the polar axis is tilted 49deg from the plane of the sky). The distribution of the H2 emission provides the first measure of the latitude dependence of the speed, mass loss, and kinetic energy associated with eta Car's 19th century explosion. Almost 75 percent of the total mass and more than 90 percent of the kinetic energy in the ejecta were released at high latitudes. This rules out a model for the bipolar shape wherein an otherwise spherical explosion was pinched at the waist by a circumstellar torus. Also, the ejecta could not have been deflected toward polar trajectories by a companion star, since the kinetic energy of the polar ejecta is greater than the binding energy of the putative binary system. Instead, most of the mass appears to have been directed poleward by the explosion itself. [abridged]
doi:10.1086/503766 fatcat:7msjsjxeejbi3mp7ef7bwlxwim