On Characterizations for Subclasses of Directed Co-Graphs [article]

Frank Gurski, Dominique Komander, Carolin Rehs
2020 arXiv   pre-print
Undirected co-graphs are those graphs which can be generated from the single vertex graph by disjoint union and join operations. Co-graphs are exactly the P_4-free graphs (where P_4 denotes the path on 4 vertices). Co-graphs itself and several subclasses haven been intensively studied. Among these are trivially perfect graphs, threshold graphs, weakly quasi threshold graphs, and simple co-graphs. Directed co-graphs are precisely those digraphs which can be defined from the single vertex graph
more » ... applying the disjoint union, order composition, and series composition. By omitting the series composition we obtain the subclass of oriented co-graphs which has been analyzed by Lawler in the 1970s and the restriction to linear expressions was recently studied by Boeckner. There are only a few versions of subclasses of directed co-graphs until now. By transmitting the restrictions of undirected subclasses to the directed classes, we define the corresponding subclasses for directed co-graphs. We consider directed and oriented versions of threshold graphs, simple co-graphs, co-simple co-graphs, trivially perfect graphs, co-trivially perfect graphs, weakly quasi threshold graphs and co-weakly quasi threshold graphs. For all these classes we provide characterizations by finite sets of minimal forbidden induced subdigraphs. Further we analyze relations between these graph classes.
arXiv:1907.00801v2 fatcat:2d755okkgbfyhet6rki4adqw74