Classical linear logic of implications

<span title="">2005</span> <i title="Cambridge University Press (CUP)"> <a target="_blank" rel="noopener" href="" style="color: black;">Mathematical Structures in Computer Science</a> </i> &nbsp;
We give a simple term calculus for the multiplicative exponential fragment of Classical Linear Logic, by extending Barber and Plotkin's system for the intuitionistic case. The calculus has the nonlinear and linear implications as the basic constructs, and this design choice allows a technically managable axiomatization without commuting conversions. Despite this simplicity, the calculus is shown to be sound and complete for category-theoretic models given by * -autonomous categories with linear exponential comonads.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1017/s0960129504004621</a> <a target="_blank" rel="external noopener" href="">fatcat:3eb5pyvykbg75ntfgfbpafkd7e</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>