Meng Zhang, Yifei Zhai
2021 Revista Brasileira de Medicina do Esporte  
Introduction: A new exercise electrocardiogram (ECG) detection system was investigated in this study to diagnose and analyze cardiopulmonary function and related diseases in a comprehensive and timely manner and improve the accuracy of diagnosis. Besides, its reliability and clinical applicability were judged. Objective: A new type of exercise ECG detection system was constructed by adding parameters such as respiratory mechanics, carbon dioxide, and oxygen concentration monitoring based on the
more » ... traditional ECG detection system. Methods: The new system constructed in this study carried out the ECG signal detection, ECG acquisition module, blood pressure and respiratory mechanics detection and conducted a standard conformance test. Results: The heart rate accuracy detected by the exercise ECG system was greatly higher than that of the doctor's manual detection (P < 0.05). The accuracy of the new exercise ECG detection system increased obviously in contrast to that of the manual detection result (P < 0.05). The key technical index input noise and input impedance test results (24.5 μV and 12.4 MΩ) of the exercise ECG detection system conformed to the standard (< 30 μV and > 2.5 MΩ). The common-mode rejection and sampling rate test results (103.5 dB and 515 Hz) of key technical indicators in the exercise ECG detection system were all in line with the standards (≥89 dB and ≥500 Hz). Conclusion: The complete exercise ECG detection system was constructed through the ECG acquisition module, blood pressure detection, and respiratory mechanics detection module. In addition, this system could be applied to detect ECG monitoring indicators with high accuracy and reliability, which could also be extensively adopted in clinical diagnosis. Level of evidence II; Therapeutic studies - investigation of treatment results.
doi:10.1590/1517-8692202127042021_0122 fatcat:cd2qqwqwanbvxg6usgpd4xgxxq