Critical matter and geometric phase transitions

W.R Wood
<span title="">2004</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Physics Letters A</a> </i> &nbsp;
A review of the fundamental nature of critical phenomena suggests that fluctuations of matter fields coupled with a topological transition are the signature elements of critical systems. These two elements are shown to induce a geometric phase transition from Riemannian geometry to a conformally invariant geometry. PACS numbers: 64.60.-i, 02.40.-k, 04.20.-q
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1016/j.physleta.2004.01.044</a> <a target="_blank" rel="external noopener" href="">fatcat:sbze25oh55ddzbqr54iekbz6qm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>