In-cloud oxalate formation in the global troposphere: a 3-D modeling study

S. Myriokefalitakis, K. Tsigaridis, N. Mihalopoulos, J. Sciare, A. Nenes, A. Segers, M. Kanakidou
2011 Atmospheric Chemistry and Physics Discussions  
Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a
more » ... ted using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol). Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r 2 = 0.36, N =114) and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the ox-Correspondence to: M. Kanakidou ( alate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21-37 Tg yr −1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2-0.3 Tg, i.e. 0.05-0.1 Tg-C that is about 5-9 % of model-calculated water soluble organic carbon burden.
doi:10.5194/acpd-11-485-2011 fatcat:qce3iamfdjh5pawgtbjjv5gcyq